ANEXO 5 MODELO AERMOD DISPERSIÓN CONTAMINANTES EN EL VALE DE ABURRÁ 2008-2016

·

CONTRATO NO. CCT 1088 DE 2016

Un Proyecto de

Área Metropolitana del Valle de Aburrá

Eugenio Prieto Soto

Director

María del Pilar Restrepo Mesa

Subdirectora Ambiental

EQUIPO DE TRABAJO

Sara Catalina Grisales Vargas, IA Heisling Alexander Cubaque López, GSA. Mg Ruth Marina Agudelo Cadavid IS, PhD Jhon Jaime Cárdenas Monsalve, I.Q. Esp Ana María Ramírez Vélez, GSA Esp Juan Gabriel Piñeros Jiménez, MD. PhD

Supervisión Área Metropolitana del Valle de Aburrá

Ana Zuleima Orrego Guarín Ángela Lucia Molina Chica Zoraida Piedrahita Calle

Tabla de Contenido

1	ID	DENTIFICACIÓN DEL COMPONENTE	10
	1.1	Información General	10
2	١N	NTRODUCCIÓN	11
3	0	BJETIVOS	13
	3.1	General	13
	3.2	Específicos	13
4	M	1ETODOLOGÍA	14
	4.1	Zona de estudio	14
	4.2	Descripción modelo de dispersión	17
	4.3	Alcance del modelo	18
		4.3.1 Características principales del Software AERMOD/ISC de BREEZE	19
		4.3.2 Condiciones meteorológicas	20
		4.3.3 Ubicación de equipos utilizados para recolectar información meteorológica	20
		4.3.4 Ubicación de las fuentes	22
		4.3.5 Ubicación de los receptores dentro de la zona de influencia	26
		4.3.6 Inventario de emisiones	28
		4.3.7 Selección de celdas para discretizar las fuentes móviles	
	4.4	Desarrollo del modelo de dispersión	37
		4.4.1 Preprocesador meteorológico AERMET	
		4.4.2 Preprocesador de terreno AERMAP	41
		4.4.3 Corrida del modelo AERMOD	44
	4.5	Construcción de mapas regionales de la contaminación	46
		4.5.1 Métodos para generación de la rejilla usada para la implementación de interpolación es	pacial 47
	4.6	Variables de entrada y fuentes de información	48
	4.7	Escenarios analíticos o de aplicación del modelo de dispersión	49
5	R	ESULTADOS	50
	5.1	Modelo de dispersión	50
		5.1.1 Resultados del modelo AERMOD para el escenario 1	50
		5.1.1.1 Resultados para el contaminante PM ₁₀	51
		5112 Pocultados para al contaminante DM	52
			<i>JL</i>
		5.1.1.3 Resultados para el contaminante SO ₂	53
		5.1.1.4 Resultados para el contaminante NOx	54
		5.1.2 Resultados del modelo AERMOD para el escenario 2	54

		5.1.2.1 Re	sultados para el contaminante PM ₁₀	55
		5.1.2.2	Resultados para el contaminante PM _{2.5}	57
		5.1.2.3	Resultados para el contaminante SO ₂	58
		5.1.2.4	Resultados para el contaminante NOx	59
	5.	1.3 Result	ados del modelo AERMOD para el escenario 3	
		5.1.3.1Re	sultados para el contaminante PM_{10}	60
		5.1.3.2	Resultados para el contaminante PM _{2.5}	63
		5.1.3.3	Resultados para el contaminante SO ₂	65
		5.1.3.4	Resultados para el contaminante NOx	67
	5.2 I	Mapas reg	ionales	72
	5.2	2.1 Mapas	regionales para PM ₁₀	73
	5.2	2.2 Mapas	regionales para PM _{2.5}	78
6	СО	NCLUSI	ONES	
7	INC	ONVEN	IIENTES Y RECOMENDACIONES	85
R	EFEF	RENCIA	S BIBLIOGRÁFICAS	

Lista de figuras

Figura 1. División política del Valle de Aburrá. Fuente: ATLAS METROPOLITANO	15
Figura 2. Mapa topográfico del Valle de Aburrá. Fuente: SURFER®	16
Figura 3. Ubicación de la estación meteorológica y del radiómetro, Universidad Nacional y SIATA	21
Figura 4. Ubicación de fuentes móviles para emisiones PM ₁₀ en el Valle de Aburrá	23
Figura 5. Ubicación de fuentes móviles para emisiones PM _{2.5} en el Valle de Aburrá	23
Figura 6. Ubicación de fuentes móviles para emisiones NOx en el Valle de Aburrá	24
Figura 7. Localización fuentes fijas para emisiones de PM ₁₀ y PM _{2.5} en el Valle de Aburrá. Fuente: Mapa Google Earth	25
Figura 8. Localización fuentes fijas para emisiones de NOx en el Valle de Aburrá. Fuente: Mapa Google Earth	25
Figura 9. Localización fuentes fijas para emisiones de SO ₂ en el Valle de Aburrá. Fuente: Mapa Google Earth	26
Figura 10. Ubicación de los receptores longitudinalmente en el Valle de Aburrá. Fuente: Mapa Google Earth	27
Figura 11. Ubicación de los receptores en celdas seleccionadas, cerca de estaciones MED- UNNV, MED-MANT e ITA-CRSV. Fuente: Mapa Google Earth	28
Figura 12. Recolección de información de emisiones por fuentes fijas y móviles del Valle de Aburrá- hoja electrónica. Fuente: Georreferenciación en coordenadas Google Earth	29
Figura 13. Interfaz para la consulta de emisiones por celda de 1 km2, utilizando plataforma de MODEAM. Fuente: plataforma MODEAM (http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view =article&id =175&Itemid=603#mapa-de-emisiones)	29
Figura 14. Base de datos construida para fuentes fijas como fuentes puntuales del modelo en el Valle de Aburrá. Fuente: Plataforma MODEAM(incluir URL de la plataforma).,	30
Figura 15. Pronósticos para octubre de 2016 para el contaminante PM _{2.5} , utilizando el modelo CAMx. Fuente: Plataforma SIMECA (http://simeca.upb.edu.co/simeca/gP.php)	31
Figura 16. Ubicación de las celdas con mayores concentraciones de PM _{2.5} para octubre de 2016 según el modelo CAMx. Fuente: Mapa Google Earth	31

Figura 17. Pronósticos para diciembre de 2016 para el contaminante PM _{2.5} , utilizando el modelo CAMx Fuente: Plataforma SIMECA (http://simeca.upb.edu.co/simeca/gP.php)	32
Figura 18. Ubicación de las celdas con mayores concentraciones de PM _{2.5} , para diciembre de 2016 según el modelo CAMx . Fuente: Mapa Google Earth	32
Figura 19. Trazado de vías localizadas en la celda 1700, con información de aforos vehiculares de los tramos y ubicación de estación MED-UNNV. Fuente: Mapa Google Earth	33
Figura 20. Trazado de vías localizadas en la celda1760 con información de aforos vehiculares y registro de datos de dos estaciones (MED-AGUI y MED-MANT). Fuente: Mapa Google Earth	
Figura 21. Trazado de vías localizadas en la celda 2296 con información de aforos, tomada desde la estación ITA-CRSV. Fuente: Mapa Google Earth	35
Figura 22. Estimación de emisiones para las vías de la celda 1700. Fuentes: Mapa Google Earth /plataforma MODEAM (http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view =article&id =175&Itemid=603#mapa-de-emisiones)	
Figura 23. Aforos vehiculares por hora del tramo id via: 487 Autopista Norte -celda 1700)	37
Figura 24. Etapas de la implementación del modelo de dispersión AERMOD para modelar concentraciones de contaminantes atmosféricos y establecer posibles escenarios de contaminación. Fuente: Environmental Protection Agency, (US EPA)	
Figura 25. Interfaz de la aplicación AERMOD/ISC de BREEZE en el modelo de dispersión para el Valle de Aburrá.	39
Figura 26. Archivos de salida entregados por el preprocesador meteorológico AERMET para la organización de los datos. Fuente: Environmental Protection Agency, (US EPA).	41
Figura 27. Vista de la elevación digital del terreno (DEM) para la zona a ser modelada mediante el uso del AERMOD. Fuente: Global Mapper-NASA	42
Figura 28. Salida entregada por el preprocesador de terreno AERMAP implementado en la aplicación BREEZE AERMOD	42
Figura 29. Fuentes ingresadas en la aplicación AERMOD para ser utilizadas por el AERMAP43	
Figura 30. Receptores ingresados en la aplicación AERMOD para ser utilizadas por el AERMAP	43
Figura 31. Ventana de la aplicación BREEZE AERMOD para iniciar el modelo de dispersión	44
Figura 32. Confirmación de corrida del modelo BREEZE AERMOD (Model Run)	45
Figura 33. Ventana de la aplicación BREEZE AERMOD, con los resultados de la corrida del modelo	45

UNIVERSIDAD DE ANTIOQUIA Austral Publica dada Palar Biore And Gines

. .

Figura 34. Mapa de temperaturas interpolado de estaciones meteorológicas Sudafricanas. Fuente:	
(https://docs.qgis.org/2.8/es/docs/gentle_gis_introduction/spatial_analysis_interpolation. html)	47
Figura 35. Base de datos de SCALAR de contaminantes almacenada en plataforma MODEAM. Fuente: plataforma MODEAM	
(modemed.upb.edu.co/zigma2/index.php?option=com_content&view=articl e&id=116:graficas-de-concentracion&catid=93&Itemid=532)	49
Figura 36. Concentraciones máximas de material particulado PM ₁₀ en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá	51
Figura 37. Concentraciones máximas de material particulado PM _{2.5} en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá	52
Figura 38. Concentraciones máximas de SO ₂ en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá	53
Figura 39. Concentraciones máximas de NOx en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá	54
Figura 40. Concentraciones máximas de material particulado PM ₁₀ en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá	55
Figura 41. Ubicación de fuentes fijas para emisiones PM ₁₀ en el Valle de Aburrá	56
Figura 42. Concentraciones máximas de material particulado PM _{2.5} en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá	57
Figura 43. Concentraciones máximas de SO ₂ en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá	58
Figura 44. Concentraciones máximas de NOx en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá	59
Figura 45. Concentraciones máximas de material particulado PM ₁₀ en 19 receptores seleccionados, para un periodo de 24h, escenario tres.	60
Figura 46. Concentraciones máximas de material particulado PM ₁₀ en 19 receptores seleccionados, para un periodo de un mes, escenario tres	61
Figura 47. Concentraciones máximas de material particulado PM ₁₀ en 19 receptores seleccionados, para un periodo de un año, escenario tres	62
Figura 48. Influencia de la cercania de las fuentes en los receptores para el contaminate PM ₁₀	62
Figura 49. Concentraciones máximas de material particulado PM _{2.5} en 19 receptores seleccionados, para un periodo de 24h, escenario tres.	63
Figura 50. Concentraciones máximas de material particulado PM _{2.5} en 19 receptores seleccionados, para un periodo de un mes, escenario tres	64

UNIVERSIDAD DE ANTIOQUIA Fandre Nuture de Inde Paster Bisse Ade Gase

١

UNIVERSIDAD DE ANTIOQUIA

1 IDENTIFICACIÓN DEL COMPONENTE

Información General	
Título del proyecto	Contaminación atmosférica y sus efectos sobre la salud de los habitantes del Valle de Aburrá 2008-2016
Componente	Ambiental
Objetivo	Caracterizar el comportamiento de la contaminación atmosférica según variables de lugar y tiempo, teniendo en cuenta indicadores trazadores y condicionantes meteorológicos, como temperatura, humedad y pluviosidad. Producto N° 2: Modelo de dispersión de la contaminación en el Valle de Aburrá basado en fuentes de emisión. Producto N° 3: Mapas regionales con la distribución geográfica de la contaminación
Tipo de informe:	Parcial Finalx
Número de contrato	CCT 1088 de 2016
Dependencia	Subdirección Ambiental
Coordinador	Juan Gabriel Piñeros Jiménez
Entidad ejecutora	Universidad de Antioquia, Facultad Nacional de Salud Pública
Grupos de Investigación (Código COLCIENCIAS)	Laboratorio de Higiene Ambiental Salud y Ambiente (COL0016049 Categoría A de Colciencias)
Fecha de inicio del proyecto	20-12-2016
Fecha de entrega del informe	27-12-2017

2 INTRODUCCIÓN

Los modelos de dispersión del aire son una técnica poderosa para evaluar si una fuente de contaminación del aire crea un problema o no. Un problema de contaminación del aire, puede definirse vagamente como una concentración ambiental de un contaminante atmosférico o una combinación de contaminantes atmosféricos en cualquier ubicación que exceda el nivel aceptable permisible para esa posición. Existen varios motivos por los cuales se usan modelos de dispersión entre las que se incluyen (1):

Cuando no es posible medir la calidad del aire en todas las ubicaciones relevantes todo el tiempo.

Si se planifica una nueva fuente de contaminación, los modelos de dispersión pueden predecir el impacto de ésta en la calidad del aire.

Cuando una fuente crea un problema de contaminación del aire, los modelos de dispersión pueden determinar la reducción de emisiones requerida para resolver el problema.

Los modelos de dispersión del aire se pueden usar para planificar la respuesta a emergencias tales como fugas accidentales.

Existe una amplia variedad de modelos de dispersión, que van desde los conceptuales y computacionalmente simples, como las plumas gaussianas, hasta los más demandantes basados en la dinámica de fluidos computacionales. En general, los modelos de dispersión son potencialmente más exactos entre más fundamentales sean o mayor grado de detalle incluyan, lo cual los hace computacionalmente más demandantes (requieren de mayores recursos de hardware, como procesadores, memoria y almacenamiento) (1).

Entre los modelos de plumas gaussianas se destacan el SCREEN3, el ISCT3 y más recientemente el AERMOD, el cual es un modelo al que se le ha introducido un gran número de características especiales entre las que se incluyen su capacidad para tratar la inhomogeneidad vertical de la capa límite planetaria, tratamiento especial de liberaciones superficiales, soporte para fuentes de área de forma irregular, modelo de tres plumas para la capa límite convectiva y limitación de la mezcla vertical en la capa límite estable, además utiliza un tratamiento de dispersión en presencia de terreno intermedio y complejo que mejora el tratamiento realizado por el ISCST3 y otros modelos; sin embargo, sin la complejidad de un modelo como el CTDMPLUS, etc, características que condujeron a mejoras en su exactitud y campos de aplicación(1), (2). Mientras en los modelos de alta demanda computacional se destacan los de tipo Lagrangianos como CALPUFF y AUSTAL2000, los Eulerianos de advección como el CMAQ y CAMx, y los modelos basados en dinámica de fluidos computacional (CFD) (1).

La complejidad de la dispersión (por ejemplo, los efectos del terreno y la meteorología).

El uso del suelo, bosques, granjas, cultivos, zonas urbanas e industrializadas, zonas costeras, etc.

El área de estudio y la localización de los receptores donde el modelo estima las concentraciones ambientales de los contaminantes.

Entre los modelos más simples de implementar y que poseen una buena exactitud se encuentra el AERMOD, el cual es recomendado por la Agencia de Protección Ambiental de los Estados Unidos US-EPA para estimar el impacto de fuentes contaminantes nuevas o existentes sobre los niveles de calidad ambiental del aire a distancias horizontales inferiores de 50 km (9). Por lo tanto, es el más adecuado para ser aplicado en un contexto regulatorio, en el caso específico cuando se desea buscar una asociación entre los efectos existentes entre contaminación y salud.

Otra de las ventajas de seleccionar este modelo para estimar los niveles de concentración en zonas cercanas a las fuentes, es que éste ya ha sido probado con anterioridad en la literatura en modelos híbridos de estudios de regresión de uso del suelo y dispersión (3), (10), así como en estudios de evaluación de cumplimiento normativo o regulatorio (11), (12), (13).

Dentro de los antecedentes en la aplicación de modelos de dispersión para conocer la calidad del aire del Valle de Aburrá, se cuenta con el Sistema de Información Metropolitano de la Calidad del Aire; el cual es un conjunto de bases de datos que contienen los resultados de los pronósticos meteorológicos y de calidad del aire que se realizan diariamente para reportar los eventos de contaminación en el Área Metropolitana. Para el desarrollo del sistema se realizó el montaje de los modelos Regional Atmospheric Modeling System RAMS para la meteorología y el Comprehensive Air quality Model with extensions) CAMx para la dispersión de gases (14). Gracias a la implementación de los modelos en mención, se pudo caracterizar el comportamiento de la contaminación atmosférica en el Área Metropolitana, según variables de lugar y tiempo, teniendo en cuenta indicadores trazadores y condicionantes meteorológicos.

3 OBJETIVOS

3.1 General

Caracterizar el comportamiento de la contaminación atmosférica en el Área Metropolitana, según variables de lugar y tiempo, teniendo en cuenta indicadores trazadores y condicionantes meteorológicos como temperatura, humedad y pluviosidad.

3.2 Específicos

Realizar el modelo de dispersión de la contaminación en el Valle de Aburrá basado en fuentes de emisión.

Elaborar mapas regionales con la distribución geográfica de la contaminación.

4 METODOLOGÍA

4.1 Zona de estudio

Comprende el Valle de Aburrá, el cual es una subregión ubicada en el centro-sur del departamento de Antioquia, Colombia, en medio de la Cordillera Central de los Andes. Constituye la cuenca natural del Río Medellín que recorre el valle de sur a norte, recibiendo una serie de afluentes a lo largo de su recorrido. El Valle tiene una longitud aproximada de 60 kilómetros y una amplitud variable; está enmarcado por una topografía irregular y pendiente, con alturas que oscilan entre 1.300 y 2.800 metros sobre el nivel del mar. Las cordilleras que lo encierran dan lugar a la formación de una armonía urbanística muy particular en cuanto se refiere al diseño de las estrategias que se requieren para hacer efectivo los derechos constitucionales de la comunidad que allí habita a la vivienda, servicios públicos domiciliarios, creación y defensa del espacio público y protección del medio ambiente. Los municipios insertados en él, considerados de norte a sur, son: Barbosa, Girardota, Copacabana, Bello, Medellín, Envigado, Itagüí, Sabaneta, La Estrella y Caldas (15). En la **Figura 1**, se muestra la división política del Valle de Aburrá (16).

Figura 1. División política del Valle de Aburrá. Fuente: ATLAS METROPOLITANO.

El Valle de Aburrá ocupa un valle intramontano profundo relativamente estrecho, que corta un sistema de superficies de erosión o altiplanos, los cuales conforman el rasgo morfológico más sobresaliente del norte de la Cordillera Central. Corresponde a una depresión topográfica alargada que puede ser dividida en dos tramos; el primero de ellos se localiza hacia el sur y centro, y va desde el municipio de Caldas hasta Bello en dirección aproximada norte - sur, presentando una curvatura en cercanía de Sabaneta y Envigado. El segundo tramo presenta una dirección noreste y va desde el municipio de Bello hasta finalizar en Barbosa. Las condiciones paisajísticas del Valle de Aburrá están enmarcadas por el valle estrecho al sur, el cual se amplía en el municipio de Medellín alcanzando unos siete kilómetros de amplitud, cerrándose nuevamente a la altura del municipio de Copacabana (16). Las características descritas anteriormente se ven reflejadas en la Figura 2.

Figura 2. Mapa topográfico del Valle de Aburrá. Fuente: SURFER®.

4.2 Descripción modelo de dispersión

La aplicación de modelos de dispersión de contaminantes atmosféricos a nivel mundial, como herramienta para la gestión ambiental y específicamente para la evaluación del impacto ambiental, se encuentra limitada a la legislación ambiental nacional e internacional.

Los modelos matemáticos de calidad del aire son herramientas matemáticas destinadas a simular los procesos físicos y químicos que afectan a los contaminantes cuando se dispersan o reaccionan en la atmósfera. Se basan en datos meteorológicos, topográficos, tasas de emisión de los contaminantes desde su origen y las características físicas de la fuente. Los modelos de dispersión tienen como objetivo fundamental caracterizar el movimiento de los contaminantes atmosféricos primarios, que una vez emitidos ingresan directamente a la atmósfera y en algunos casos, contaminantes secundarios que se forman como resultado de reacciones complejas (17).

Otro punto de importancia de los modelos matemáticos para la gestión de la calidad del aire, es que con base a éstos se puede definir cómo contribuye una determinada fuente a los problemas de calidad del aire, para establecer un diseño efectivo de estrategias que permitan reducir sus emisiones contaminantes. En resumen, los modelos de dispersión son una poderosa herramienta para la gestión de la calidad del aire, dado que permiten evaluar el impacto de la operación de fuentes fijas individuales o múltiples, así como predecir la efectividad de programas regulatorios (17).

Con los crecientes problemas de contaminación y el énfasis dado a las normas de calidad del aire a partir de la década de 1970 en Estados Unidos, Europa y durante los últimos 10 años en los países en vías de desarrollo, los modelos de dispersión están siendo extensamente usados para evaluaciones del impacto ambiental y como apoyo para la elaboración de planes de acción locales para mejorar la calidad del aire.

Con el fin de evaluar los impactos asociados a las emisiones producidas en las diferentes actividades generadoras de emisiones en el Valle de Aburrá, en este trabajo se aplica el modelo de dispersión AERMOD, el cual permite estimar los niveles de concentración en diferentes ubicaciones (receptores), y poder comparar estos valores con los niveles medidos o máximos permisibles.

Producto de las diferentes actividades antropogénicas que se desarrollan dentro del Valle de Aburrá, se produce la emisión de material particulado, dióxido de azufre, óxidos de nitrógeno, ozono entre otros contaminantes provenientes principalmente de la combustión de combustibles fósiles, dando lugar a una distribución variable de la concentración de los contaminantes, tanto en el espacio como en el tiempo, lo que determina conjuntamente con las condiciones climáticas, meteorológicas y topográficas, la calidad del aire presente en el entorno cercano; la calidad del aire depende de las características de las fuentes de emisión, cantidad de fuentes generadoras, tipo de combustibles utilizados, eficiencia del sistema de combustión, altura de las chimeneas, topografía, altitud y la estabilidad atmosférica. De allí que todos estos factores aportan incertidumbre,

variabilidad y dificultad en el monitoreo ambiental, no obstante, la aplicación de metodologías estándar, ayudan a minimizar estas variables (17).

Con base en los modelos de dispersión de contaminantes atmosféricos, se puede analizar el cumplimiento de los valores máximos permisibles establecidos en la legislación ambiental vigente, y para este estudio el modelo permitió identificar las zonas de mayor afectación, para los diferentes contaminantes modelados.

4.3 Alcance del modelo

El modelo AERMOD es un modelo de dispersión de Gauss en estado estacionario; permite encontrar las concentraciones de contaminantes atmosféricos máximas horarias, máximas diarias y promedio anuales a nivel del suelo, considera las condiciones simples y complejas del terreno y permite evaluar la influencia de la variación de las condiciones meteorológicas. Este modelo propuesto por la US EPA (Environmental Protection Agency), denominado AERMOD fue desarrollado mediante el programa informático AERMOD/ISC de la empresa BREEZE, el cual utiliza una metodología que permite determinar el impacto de la fuente bajo un conjunto de condiciones meteorológicas y topográficas, y establecer los posibles escenarios de contaminación (bajo condiciones operativas reales), de tal manera que no se puedan tener concentraciones superiores a las que se obtendrán con el modelo. Las principales características del modelo que fueron tenidas en cuenta para su aplicación fueron (1), (18):

- Se puede utilizar para evaluar aspectos de carácter regulatorio o normativo.
- Está diseñado para trabajar a pequeña escala desde 1m hasta 50 km.
- Es un modelo de dispersión de calidad del aire preferido y recomendado por la EPA.
- Se ha trabajado en combinación con modelos de regresión de uso del suelo (LUR).
- Se ha empleado para evaluar el efecto de fuentes puntuales sobre sus alrededores.
- Es un modelo de fácil implementación.
- Bajos costos de recursos computacionales del modelo.
- Resolución espacial de 1m (distancia mínima entre receptores contiguos).
- Es un modelo basado en plumas gaussianas.
- Permite trabajar con terrenos complejos.

Cabe destacar que la población del Valle de Aburrá, al desplazarse de un destino a otro, debe someterse a la contaminación cercana a las vías, por lo tanto, esta exposición se puede representar por los valores de concentración de emisión reportados en las estaciones de monitoreo de calidad

del aire del Área Metropolitana del Valle de Aburrá, en las estaciones clasificadas como de tráfico, las cuales presentan valores más elevados en comparación con las estaciones clasificadas como de fondo, mesoescala y poblacionales. Por lo anterior, el modelo AERMOD fue seleccionado, debido a que permite establecer una predicción de la contaminación en zonas cercanas a las fuentes de emisión, puesto que fue diseñado para este tipo de escenarios y sus características son de aplicación para el Valle de Aburrá.

4.3.1 Características principales del Software AERMOD/ISC de BREEZE

A continuación, se enumeran las principales características que posee la aplicación AERMOD/ISC de la empresa BREEZE que se utiliza para estimar las concentraciones de los contaminantes modelados (19):

- Incorpora la última EPA EE.UU. AERMOD versión ejecutable 15181 publicada el 24 de julio el año 2015.
- Habilita las versiones paralelas de alta velocidad en su última versión ejecutable AERMOD 15181.
- Añade una función que permite aplicar una relación de NO₂ / NOx a múltiples fuentes a la vez y a todo tipo de fuentes.
- Se ha añadido una nueva herramienta para facilitar a los usuarios calcular los parámetros de flotabilidad para fuentes de línea de flotación.
- Incluye una base, versión fusionada de BREEZE AERMET y una versión básica de METVIEW BREEZE.
- Posee una interfaz gráfica de usuario optimizada para el modelado de dispersión más intuitivo y fácil.
- Racionaliza NO₂, SO₂ y PM_{2.5} para el modelado EE.UU. NNCAA.
- Incorpora el método de relación ambiente (ARM) y ARM₂ para el modelado de NO₂.
- Genera Modelos de un número ilimitado de fuentes y receptores.
- Concibe Modelos de numerosos tipos de fuentes, incluyendo el punto / pila (vertical, horizontal y al tope), área, volumen, a cielo abierto, llamarada, línea del área de brisa y línea del área de la EPA.
- Genera Modelos de numerosos tipos de receptores, incluyendo rejilla discreta cartesiana, cuadrícula polar, y la rejilla de densidad variable.

4.3.2 Condiciones meteorológicas

Un contaminante emitido a la atmósfera es arrastrado por las corrientes de aire siguiendo la dirección predominante del viento. Los movimientos perpendiculares al viento y la turbulencia colaboran en la dispersión de dicho contaminante. La velocidad del viento afecta en gran medida la concentración de contaminantes en un área, mientras mayor sea su velocidad, menor será la concentración de éstos. El viento diluye y dispersa rápidamente los contaminantes en el área circundante.

La predicción del desplazamiento de la pluma de una sustancia emitida a la atmósfera alrededor del punto de emisión, es de gran interés en el ámbito de la Calidad del Aire, y suele ser manejado con los modelos gaussianos de dispersión que permiten calcular las concentraciones de sustancias en los puntos de interés. Los modelos permiten variar las condiciones meteorológicas, topográficas y las características de las fuentes emisoras, para crear escenarios que ayuden a determinar los factores que intervienen en la ocurrencia de las peores condiciones de contaminación (17).

La aplicación de un modelo detallado de dispersión de contaminantes atmosféricos requiere el uso de datos meteorológicos tales como dirección y velocidad del viento, radiación solar o nubosidad los cuales son conocidos como datos primarios y otros obtenidos a partir de éstos, como son las categorías de estabilidad atmosférica con base a la clasificación de Pasquill y la altura de mezcla urbana y rural (17). Esto permitió conocer el comportamiento real de la pluma de dispersión y la ubicación de las zonas más afectadas por la caída de los contaminantes.

4.3.3 Ubicación de equipos utilizados para recolectar información meteorológica

Para el presente estudio, se utilizaron los datos reportados por la estación meteorológica ubicada en la Universidad Nacional Núcleo el Volador y del radiómetro operado por el SIATA, los equipos se localizaban en las coordenadas mostradas en la Tabla 1, y que también se pueden ver en la captura tomada usando Google Earth en la Figura 3.

Estación	Coordenadas UTM ZC	DNA 18	Elevación (m)	Altura sobre el nivel del mar (m)				
	Х	Υ						
MED-UUNV	436173.00	692353.00	12	1467				
SIATA-RADIOMETRO	434890.28	691893.70		1490				

Tabla 1. Ubicación de la estación meteorológica y radiómetro, Universidad Nacional y SIATA

Figura 3. Ubicación de la estación meteorológica y del radiómetro, Universidad Nacional y SIATA.

Fuente: Mapa Google Earth.

Con la información recolectada de las estaciones meteorológicas y los equipos operados por el SIATA, previo tratamiento de los datos, fue necesario el desarrollo de rutinas en Matlab, con el fin de promediar los datos con frecuencia inferior a una hora, y convertirlos en datos horarios, debido a que la información suministrada por el radiómetro no reporta en una frecuencia horaria, como se requiere para la generación de la capa AERMET.

En cuanto a los datos de las estaciones meteorológicas se encontraron registros de 15 estaciones, pero algunas no contaban con todos los sensores; entre las que tenían información completa se seleccionó la situada en la Universidad Nacional Núcleo el Volador (MED-UNNV), la cual está ubicada aproximadamente en la parte central del Valle de Aburrá, permitiendo así una mejor identificación del comportamiento promedio de las condiciones meteorológicas del Valle. Una vez realizado los ajustes de los datos, se procedió a la elaboración de la capa meteorológica AERMET, para lo cual inicialmente se implementó el modelo matemático propuesto por la Agencia de Protección Ambiental de los Estados Unidos (US-EPA) mediante rutinas en MATLAB.

Dado que la modelación matemática es extensa; para una mejor profundización de la misma, se puede consultar los capítulos 5 y 14 y el apéndice A del libro "Air Dispersion Modeling Foundations and Applications" (1), dicha modelación se implementó mediante el uso de rutinas en Matlab, las cuales una vez ejecutadas generaron dos archivos, uno conocido como surface (.SFC) y otro profile (.PFL). Para la estructura de los archivos, se siguieron las recomendaciones dadas en el documento "ADDENDUM USER'S GUIDE FOR THE AERMOD METEOROLOGICAL PREPROCESSOR (AERMET) de

UNIVERSIDAD DE ANTIOQUIA

valores extremos estimados para los parámetros y las horas con ausencia de datos.

Los datos meteorológicos faltantes de temperatura, porcentaje de humedad relativa, velocidad del viento, dirección del viento y radiación solar; fueron imputados aplicando la técnica de autoregresión implementada en la función "fillgaps" de Matlab y mediante el uso de los datos promedios de las series de tiempo. Lo anterior, debido al carácter de ciclo diurno de variables como la temperatura y la radiación solar. La imputación de los datos es sugerida en el apéndice mencionado anteriormente (20).

4.3.4 Ubicación de las fuentes

El inventario de emisiones de fuentes fijas, de área y móviles está disponible en la plataforma MODEAM, alimentada y administrada por la Universidad Pontificia Bolivariana sede Medellín (21). Con el fin de identificar la información del inventario de emisiones disponible, se realizó una primera exploración, que permitió obtener los datos almacenados para los tipos de fuentes requeridas (fijas, móviles y de área) para la implementación del modelo. El periodo de tiempo de la consulta, se acotó a los años 2015 y 2016, debido a las limitaciones de disponibilidad de datos meteorológicos en periodos previos.

Otro criterio que se tuvo en cuenta en la selección y descarga de la información, fueron los contaminantes de interés para la investigación (PM₁₀, PM_{2.5}, NO_x, SO_x). Para los contaminantes mencionados, la base de datos MODEAM reporta información tanto para fuentes móviles y fijas, con excepción de para el SO₂ proveniente de fuentes móviles. En cuanto a las fuentes de área, no se incluyeron dentro del modelo de dispersión dada la escasa información de éstas.

Una vez se tuvo claro cuál era la información a revisar, se procedió a la recopilación manual de los datos desde la plataforma MODEAM, debido a que ésta no permite descargar los datos del inventario de emisiones de fuentes móviles y fijas, pero sí muestra los valores de concentración de la contaminación utilizando una rejilla de 60x60 km sobre el Valle de Aburrá, ésta se encuentra compuesta internamente por 3600 cuadrículas cada una de 1 km², donde cada una de ellas permite visualizar la emisión del contaminante en kg/día. En la **Figura 4**, **Figura 5** y **Figura 6**, se muestran las celdas que contienen información de las emisiones provenientes de fuentes móviles para los contaminantes PM₁₀, PM_{2.5} y NO_x (el número de celdas con información es 139, 149 y 136 respectivamente). Los colores de las celdas se dan en función de la emisión, los cuales se pueden asociar mediante la escala que se encuentra a la derecha de las figuras mencionadas.

Figura 4. Ubicación de fuentes móviles para emisiones PM₁₀ en el Valle de Aburrá.

Figura 5. Ubicación de fuentes móviles para emisiones PM_{2.5} en el Valle de Aburrá.

UNIVERSIDAD DE ANTIOOUIA

Fuente: plataforma MODEAM (http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id =175&Itemid=603#mapa-de-emisiones).

Figura 6. Ubicación-de fuentes móviles para emisiones NO_x en el Valle de Aburrá.

Fuente:

plataforma

MODEAM

(http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id =175&Itemid=603#mapa-de-emisiones).

En cuanto a las fuentes fijas se identificó un total de 1389, de las cuales 539 emiten PM_{10} y $PM_{2.5}$, 882 SO₂ y 1160 NO_x (algunas fuentes emiten más de un contaminante). En las Figuras 7 a 9, se muestra la distribución geográfica de las fuentes a lo largo del Valle de Aburrá, donde se puede evidenciar que la mayoría de las fuentes fijas se encuentran ubicadas en jurisdicción de los municipios de Itagüí, Envigado, Sabaneta, y en la zona sur del municipio de Medellín. Mientras hacia el norte resaltan dos clúster con alta densidad de fuentes fijas ubicadas en Girardota y Copacabana.

Figura 7. Localización fuentes fijas para emisiones de PM₁₀ y PM_{2.5} en el Valle de Aburrá.

Fuente: Mapa Google Earth.

Figura 8. Localización fuentes fijas para emisiones de NO_x en el Valle de Aburrá.

Fuente: Mapa Google Earth.

Figura 9. Localización fuentes fijas para emisiones de SO₂ en el Valle de Aburrá.

Fuente: Mapa Google Earth.

4.3.5 Ubicación de los receptores dentro de la zona de influencia

Durante el estudio se realizaron dos corridas del modelo donde se ubicaron 1864 receptores a lo largo del Valle de Aburrá, como se puede ver en la **Figura 10**. Los receptores se ubicaron a una distancia de 500 m entre ellos. La distribución seleccionada permitió identificar el comportamiento de los diferentes contaminantes dentro del Valle de Aburrá, sin generar tiempos de ejecución del modelo muy grandes. Si, por el contrario, se opta por trabajar con distancias menores entre los receptores por ejemplo 100 m, el tiempo de cómputo se multiplica por un factor de 25, sin entregar información útil adicional, debido a que las fuentes se ingresan como fuentes de área de 1 km².

Figura 10. Ubicación de los receptores longitudinalmente en el Valle de Aburrá.

Fuente: Mapa Google Earth.

Por otro lado cuando se discretizaron las emisiones de fuentes móviles para tres celdas diferentes (1700, 1760 y 2296, nomenclatura tomada del MODEAM para identificar las respectivas celdas) se ubicaron 19 receptores al interior de éstas, como se muestra en la **Figura 11**, se resalta que tres receptores se ubicaron en posiciones donde se encuentran geográficamente las estaciones MED-UNNV, MED-MANT e ITA-CRSV, lo anterior con el fin de comparar los valores predichos por el modelo contra los registrados por las estaciones, y de esta forma validar de forma parcial el desempeño del modelo.

Figura 11. Ubicación de los receptores en celdas seleccionadas, cerca de estaciones MED-UNNV, MED-MANT e ITA-CRSV. Fuente: Mapa Google Earth.

4.3.6 Inventario de emisiones

Para la consolidación del inventario de emisiones se recolectó información de las celdas que contenían estimación de las emisiones tanto por fuentes móviles como fijas y en una hoja de Excel, en la cual adicionalmente se ingresó la georreferenciación en coordenadas UTM 18N para ser utilizadas por el modelo AERMOD como fuentes de área, como se muestra en la **Figura 12**, mientras en la **Figura 13**, se muestra un pantallazo de la forma en que la plataforma MODEAM permitía consultar los datos de emisiones por celda.

Para el escenario 3, las emisiones para las fuentes fijas se ingresaron como fuentes puntuales al modelo. La base de datos con la información de las fuentes fijas suministrada por el AMVA, fue depurada y para algunas fuentes que no contaban con la georreferenciación, ésta fue ingresada manualmente utilizando la información de la dirección de la ubicación de la fuente; la base de datos construida se muestra en la **Figura 14**.

H \$.													
thive In	icio Insertar	Diseño de página		Datos Rev	isar Vista	Programador	Prueba de ca	iga Utilversal Do	cumere Corveter 🛛 👰				A Compartir
A Co Co of Portapao	par fermate	alibr) + 11 6 K £ + Ξ + Fuente	• A ∧ ≡ >• ▲ • ≡		Ajustar	texto sery centrer - G	General 1927 + 96, acc Itanero	St 43	Der formato somo table - sekle - Estros	Internat Elevina	Formato	atesume * A aterur* Ordi onar* Gb Edica	T P enery Biocary ner selectionar-
	41 L K	J 4											
A	В	D	E	Ŧ	G	н	1	1	к	4	м	N	0
The second	100 M				100		PM10	1	10 21 VAV				
							2015						
-	Columna	DESCRIPCIÓN		. ·	ELEVACIĆ -	EMISIÓN -	EMISIÓN -	emisión 💌	release height 💌	X LONG -	YLONG .	ÁNGULC -	INT MERT DAM
110	Columna	DESCRIPTION			manm	ke/dia	kg/año	g/(sm ²)	m	m	m		INT_ARKI_DIM
19	13	FM_BP_13	429183.64	678670.40	1500	4.52	1649.80	5.2697E-08	0.5	998.78	993.97	0	0
20	13	FM_BO_13	429183.64	679664.37	1500	0.45	164.25	5.2463E-09	0.5	998,78	993.97	0.	0
20	14	FM_80_14	430182.42	679664.37	1500	0.67	244.55	7.8112E-09	0.5	998.78	993.97	0	0
20	15	FM_BO_15	431181.20	679664.37	1500	0.22	80.30	2.5649E-09	0.5	998.76	993.97	0	0
21	15	FM_BN_15	431181.20	680658.33	1500	0.54	197.10	6.2956E-09	0.5	998.78	993.97	0	0
21	16	FM_BN_16	432179.98	680658.33	1500	0.64	233.60	7.4615E-09	0.5	998.78	993.97	0	0
21	17	FM_BN_17	433178.76	680658.33	1500	0.08	29.20	9.3268E-10	0.5	998.78	993.97	0	0
22	17	FM_BM_17	433178.76	681652.30	1500	0.97	354.05	1.1309E-08	0.5	998.78	993.97	0	0
22	18	FM_BM_18	434177.55	681652.30	1500	0.07	25.55	8.1610E-10	0.5	998.78	993.97	0	0
22	19	FM BM 19	435176.33	681652.30	1500	0.06	21.90	6.9951E-10	0.5	998.78	993.97	0	0
22	21	FM_BM_21	437173.89	681652.30	1500	0.23	83.95	2.6815E-09	0.5	998.78	993.97	0	٥
23	18	FM_BL_18	434177.55	682646.27	1500	1.02	372.30	1.1892E-08	0.5	998.78	993.97	0	0
23	19	FM BL 19	435176.33	682646.27	1500	0.33	120.45	3.8473E-09	0.5	998.78	993.97	0	0
23	20	FM BL 20	436175.11	682646.27	1500	1.04	379.60	1.2125E-08	0.5	998.78	993.97	0	0
23	21	FM BL 21	437173.89	682646.27	1500	0.86	313.90	1.0026E-08	0.5	998.78	993.97	0	0
23	22	FM_BL_22	438172.68	682646.27	1500	0.17	62.05	1.98196-09	0.5	998.78	993.97	0	0
24	18	FM_BK_18	434177.55	683640.23	1500	8.94	3263.10	1.0423E-07	0.5	998.78	993.97	0	0
24	19	FM BK 19	435176.33	683640.23	1500	14.91	5442.15	1.7383E-07	0.5	998.78	993.97	0	0
24	20	FM BK 20	436175.11	683640.23	1500	4.57	1668.05	5.3279E-08	0.5	998.78	993.97	0	0
24	21	FM_BK_21	437173.89	683640.23	1500	4.91	1792.15	5.7243E-08	0.5	998.78	993.97	0	0
				CE3C 40 33	1000	0.75	777.40	e pence no	A 1	000 10	002.07		

Figura 12. Recolección de información de emisiones por fuentes fijas y móviles del Valle de Aburrá-hoja electrónica. Fuente: Georreferenciación en coordenadas Google Earth.

Figura 13. Interfaz para la consulta de emisiones por celda de 1 km², utilizando plataforma de MODEAM. Fuente: plataforma MODEAM (http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id =175<emid=603#mapa-de-emisiones).

UNIVERSIDAD DE ANTIOQUIA

E 5 - C ² - • DATOS PROCESADOS FUENTES FUAS - Excel																							
hivo	nicio I		Diseño de	e página	Fórmuli	as Date	os Rev		∕ista P	rogramado	or Prue	ba de carg										A Compa	ntir
<u>₩</u> & c	ortar	Calib	ni	+ 11	- A A	= =	_ &.	. 🕞	Ajustar text	0	General		-				÷ >	< 💾	ΣAu	tosuma 🔻	A	ρ	
- Bac	opiar 🔻										-			L∎ ≇ L	20 	tiles de la	III III	- 5	🐺 Rel	lenar -	2 ·	P.u.u.	
of 💞 C	opiar forma	ito N	<u>K</u> <u>5</u> -	⊞ • ≤	≥ - <u>A</u> -	= =	= •= :	•=	Combinar y	centrar *	9	6 aro 18	5.6	ndicional z como	ormato Es stabla zc	olda z	sertar cirmin	ar rormati	/ e Boi	rra r *	filtrar *	selections	
Portapa	Deles	6	FL.	iente	6			Alineación		r	a n	úmero	5	Estil	05		Celd	15			Edición		
352	- -	× v	f _X	="FF-" (& A1352																		
A	в		5	н	1	J	к	L	M	n	D	-	q		5	т	U	w.	v	Att	AH	AL	e.J
		MP	PM10	PM2.5	Nos	Son							h	GEOMETRIA	D	LARGO	ANCHO	Vs	11st	v	N		
E.	NAME	(Malaña)	[Mg/año]	(Mgřaňo)	[Mg/año]	(Mg/año)	grados	minutos	rednor	gradox	minutox	xeguax	(m)	(Lincular o	Ø(m)	fml	(m)	(m/s)	•C	e 19	(°)	×	Y
1	FT-1	N.64556	11.35177	7.070112	4,140053	0.764375	5	- 11	35.8	75	75	43.2	33.00	Eiroular	100			5,43	145.16	-15,5553	5.734355	434134.74	664737
2	FF-2	14.64656	11.39177	7.079172	4,149659	9.784375	8	11	40.8	75	35	43.7	33.00	Diroular	100			6.66	160.05	-75.5955	8.194667	434119.41	664768
4	FF-4	1687392	0.697455		1.023684	1919002	8	13	47.08	75	34	90.20 55.25	17.00	Drouter	1.00			6.63	106.50	-15.5735	6.229739	435812 TO	666640
5	FF-5	1706922	0.705528		1.035533	1940201	6	21	3.89	75	30	20.57	15.00	Diroular	0.50			7.57	224.80	-75.5057	6.352747	444067.04	70223
6	FF-8				0.000/22	3.49E-08	6	21	9.9	75	30	20.58	15.50	Diroular	1.68			8.63	15.50	-75.5057	6.35275	444068.73	70223
8	FF-6	6 181104	4.91531	2.018538	4.53721	9 925145	6	10 T	2.4	75	35	211	22.67	Licular	0.52			2.43	193.31	- 15.6059 - 15.6059	6.167333	432968.55	58174
9	FF-9	4.799693	3, 1198	1279918	3.619775	7.699507	6	57	39.8	75	34	411	21.00	Eirovlar	0.90			7.03	763.85	-75.5181	6.221722	436047.30	68842
70	PP-10				0.10472	0.003011	5	13	35.8	75	34	411	1100	Eiroular	0.25			3.35	141.01	-75.5101	6.221722	436047.30	00042
11	FF-11	0.497947			0.10472	0.00301	6	13	38.8	75	34	411	10.00	Diroular	1.60			10.75	65.26	-75.5761	6.227722	436047.30	68842
13	FE-13	0.101041			0.286614	0.007665	6	9	37.98	75	37	5.62	30.00	Dicela	8.62			12.52	167.83	-75.6182	8 8055	431597.36	68099
14	FF-14						8	10	0.67	75	38	50.03	15.00	Diroular	0.30			0.05	138.00	-75.6139	6.166853	432077.32	681655
15	FF-15						8	9	29.69	75	37	15.15	20.00	Director	0.48			4.56	423.17	-75.6209	6.58247	431304.15	68074
78	FF-16						6	9	23.69	75	31	15.15	20.00	Eircube	1.48			4.60 6.04	234.05	-15.6209	6.58247	431304.15	69074
18	FF-18				0.342525	0.003948	6	9	30.48	75	31	15.42	15.50	Circular	1.66			8.63	15.50	-75.621	6.758467	437295.88	69076
79	FF-19				0.15749	0.004528	6	9	30.48	75	31	15.42	15.50	Eircular	0.66			8.63	16.50	-75.621	6.768467	431295.98	680761
20	FE-20				0.351267	0.010300	8	12	27.15	75	8	27.15	5.00	Decelar	0.40			0.53	250.00	-75,5303	6.201542	434523.63	688190
22	FF-22	_			0.253734	0.007295	6	9	2129	75	36	28.13	20.00	Diroslar	0.45			4.09	141.88	-75.6078	6.155914	432749.04	66048
23	FF-23	0.78745	0.511842	0.209987	0.577463	12632	8	16	17	75	35	13.65	19.70	Diroular	0.30			3.40	74.90	-75.5871	6.267139	435051.88	68277
24	FF-24				0.267983	0.007705	6	16	44.18	75	34	25.32	5.00	Diroular	0.60			8.63	15.50	-75.5737	6.278889	436538.42	63408
28	FF-28				1671823	0.048065	8	5	26.5	75	38	216	15.00	Dircular	0.63			9.27	98.92	-75.6393	6.090694	429252.68	67327
21	FF-27				3.374584	0.097019	6	5	26.5	75	38	216	15.00	Eircula	0.63			8.63	16.50	-15.6393	6.090694	429252.68	673275
28	FF-28				1.975738	0.056602	5	5	26.5	75	33	216	15.00	Eircular	0.38			2142	21.22	-75.6393	6.090694	429252.68	61327
30	FF-30				0.87%22	0.025058	6	5	26.5	75	38	216	2.00	Ercelar	1.90	<u> </u>	-	6.60	114.00	-75.6393	6.090694	429252.66	673275
31	FF-31	1,102429					6	5	26.5	75	38	216	8.00	Diroular	0.64			8.20	173.90	-75.6393	6.090694	429252.68	67327
32	FF-32	1102429					6	5	26.5	75	38	216	3.00	Diroular	0.50			20.60	165.60	-75.6393	6.090694	429252.68	87327
34	FF-34	0.002401					8	5	26.5	75	38	216	15.00	Drouter	0.42			48.80	35.33	-75.6393	6.030634	429252.88	67327
35	FF-35	0.794143					8	5	26.5	75	38	216	15.00	Dircular	1.54			39.40	28.73	-75.6393	6.090694	429252.68	673275
36	FF-36				0.202781	0.00583	6	5	26.5	75	38	216	15.00	Circula	0.16			45.20	35.T3	-15.6393	6.090694	429252.68	613275
31	FE-38				0.093274	0.002682	6	5	26.5	75	38	216	15.00	Circular Circular	0.37		-	50.00	29.83 64.TD	-T5.6393	6.030634	429252.68	613279
33	17-30				0.247255	0.007100	5	5	20.5	75	35	215	15.00	Eircular	0.37			46.00	4T. TO	-15.6333	6.030634	423252.00	613275
40	FF-40				0.031027	0.000652	8	5	26.5	75	38	216	15.00	Droular	0.38			11.73	47.80	-75.8393	6.090694	429252.68	675279
41	FE-41	_			0.386554	0.001403	6	5	26.5	75	38	216	15.00	Diroular	0.30			8.63	33.30	- 15,6393	6.030694	429252.88	613279
					0.000000	0.00000		-	20.0			210	1 400	24000	0.42			0.00	50.00	70.0330	0.000000	1000002.00	anner a

UNIVERSIDAD DE ANTIOQUIA

Figura 14. Base de datos construida para fuentes fijas como fuentes puntuales del modelo en el Valle de Aburrá. Fuente: Plataforma MODEAM (incluir URL de la plataforma).,.

4.3.7 Selección de celdas para discretizar las fuentes móviles

La selección de las celdas para desarrollar la discretización se utilizó la información reportada por la plataforma SIMECA, la cual realiza pronósticos de calidad del aire para diferentes periodos de tiempo mediante el empleo del modelo CAMx. Los resultados devueltos por el modelo para el contaminante PM_{2.5} en dos temporadas, la primera de invierno (octubre) y la segunda verano (diciembre), se muestran en las **Figura 15** y **Figura 17**, donde se identifican las zonas de máxima concentración como aquellas celdas de color rojo. Una vez identificada la georreferenciación del centro de las celdas de color rojo, se procedió a ubicar las zonas para ambos periodos seleccionados en Google Earth, lo que permitió generar las zonas mostradas en las **Figura 16** y **Figura 18**, las cuales corresponden a celdas de 1 km², donde el modelo CAMx estima que se encuentran las mayores afectaciones (los colores de las celdas seleccionadas corresponden a los utilizados por el modelo CAMx).

Figura 15. Pronósticos para octubre de 2016 contaminante PM_{2.5}, utilizando el modelo CAMx. Fuente: Plataforma SIMECA (http://simeca.upb.edu.co/simeca/gP.php).

Las celdas coloreadas con rojo y naranja representan los sitios con mayores niveles de contaminación que predice el CAMx para octubre de 2016, la Figura 17 muestra estas celdas, las cuales son cercanas a la estación de monitoreo de calidad el aire Núcleo Volador.

Figura 16. Ubicación de las celdas con mayores concentraciones de PM_{2.5} para octubre de 2016, según el modelo CAMx. Fuente: Mapa Google Earth.

Figura 17. Pronósticos para diciembre de 2016 contaminante PM_{2.5}, utilizando el modelo CAMx. Fuente: Plataforma SIMECA (http://simeca.upb.edu.co/simeca/gP.php).

En el periodo diciembre de 2016, el pronóstico del CAMx, presenta como el sitio de más altos niveles de contaminación por partículas menores a 2.5 micras sobre la vía regional en el municipio de Itagüí cercano a la estación de monitoreo de calidad del aire ITA-CRSV.

Figura 18. Ubicación de las celdas con mayores concentraciones de PM_{2.5}, para diciembre de 2016 según el modelo CAMx. Fuente: Mapa Google Earth.

Los resultados de los pronósticos, se tomaron para dos periodos diferentes, el primero en octubre caracterizado por la baja dispersión de los contaminantes, donde se encontró que las celdas que presentaron mayores concentraciones de PM_{2.5}, se ubican hacia la zona centro de Medellín y hacia el sur del Valle de Aburrá. Mientras para el segundo periodo correspondiente al mes de diciembre, las

UNIVERSIDAD DE ANTIOQUIA

mayores concentraciones se presentaron hacia la zona de Itagüí. Apoyados en los resultados anteriores se seleccionaron las celdas 1700 y 1760 (ambas celdas se encuentran dentro de aquellas que el modelo predice las concentraciones máximas); la primera posee la estación MED-UNNV catalogada como de fondo urbano (poblacional) y que es marcadamente influenciada por el tráfico vehicular proveniente de vías arterias como la Autopista Norte, la Avenida Regional y la Carrera 65; la segunda por ser característica del centro de la ciudad y además de contar con registro de datos de tres estaciones (MED-AGUI y MED-MANT), de las cuales, la primera ya no se encuentra en operación. La celda 2296, fue seleccionada debido a que presenta concentraciones máximas predichas por el modelo CAMx y en ella se encuentra la estación ITA-CRSV.

Una vez seleccionadas las celdas se procedió a trazar las vías al interior de éstas a partir de la información de aforos (ver **Figura 19**, **Figura 20** y Figura 21). Se usaron diferentes colores para identificar las vías, dado que dan mayor claridad del inicio y terminación de los tramos trazados lo cual permitió determinar la longitud de los mismos mediante la herramienta regla de Google Earth.

Figura 19. Trazado de vías localizadas en la celda 1700, con información de aforos vehiculares de los tramos y ubicación de estación MED-UNNV. Fuente: Mapa Google Earth.

En la **Figura 19**, se muestran las vías principales que cruzan por la celda 1700 (los colores empleados se utilizan solo para demarcar el inicio y terminación de la vía, y no tienen ninguna relación con los niveles de contaminación o aforos asociadas a las vías), entre las que se destacan las Autopista Norte y Regional, y las Avenidas Barranquilla y Ferrocarril. En cuanto a las vías secundarias gran parte de éstas no se incluyeron dada la falta de información de los aforos. Esta situación generó que la emisión estimada para la cuadricula de 1 km², al tratar de distribuirse entre las vías con aforos, no quedo apropiadamente distribuida dentro de toda la celda, prueba de esto es la presencia de zonas como las que se encuentran entre el punto identificado como El Chagualo y la Avenida Barranquilla al Norte, y al sur la comprendida entre dicho punto y la Minorista.

Figura 20. Trazado de vías localizadas en la celda1760 con información de aforos vehiculares y registro de datos de dos estaciones (MED-AGUI y MED-MANT). Fuente: Mapa Google Earth

Figura 21. Trazado de vías localizadas en la celda 2296 con información de aforos, tomada desde la estación ITA-CRSV. Fuente: Mapa Google Earth.

Como se puede evidenciar en la Figura 21, la información de aforos para la celda 2296 es muy escasa, donde sólo se resalta la Autopista Sur. Lo anterior genera que, al correr el modelo de dispersión, éste realice predicciones de presencia de alta concentración en los alrededores de la autopista, y para zonas alejadas como la estación IT-CRSV, los niveles predichos sean inferiores a los

UNIVERSIDAD DE ANTIOOUIA

esperados, debido a que en cercanías a dicho punto también existe presencia de emisiones vehiculares, que no son tomadas en cuenta por el modelo.

Para estimar las emisiones para cada una de las vías, se desarrolló una hoja de cálculo en Excel, en la cual se ingresó la longitud de las vías tomadas desde Google Earth y el aforo para cada una de éstas, con la información dada para la emisión de la celda de 1 km², se estimaron las emisiones lineales como se muestra en la **Figura 22**. Los aforos se tomaron de la página del MODEAM como se evidencia en la **Figura 23**.

Archr	vo Inicio	Insertar	Diseño de j	página I	Fórmulas	Datos	Revisar	Vista	Programade	or Pruel	ba de carga	Univer	sal Documer	nt Converter	Ç₂qı	ué desea hao			₽ Comp	artir	
A1	Ŧ	: × v	f _x	EMISION	FUENTES M	IOVILES - C	ELDA 1700														~
	A	в	С	D	E	F	G	н		J	к	L	М	N	0	Р	G	R	5	т	
1													EMISION FUE	NTES MOVIL	ES - CELDA 1	700					
2	CONTAM	NANTE	Hora 1	Hora 2	Hora 3	Hora 4	Hora 5	Hora 6	Hora 7	Hora 8	Hora 9	Hora 10	Hora 11	Hora 12	Hora 13	Hora 14	Hora 15	Hora 16	Hora 17	Hora 18	1
3	PM		Kg/n	Kg/n	Kg/h	Kg/II	Kg/h	Kg/n	Kg/n	Kg/h	Kg/n	kg/n	6.79	Kg/n	6.71	Kg/h	Kg/II	Kg/h	Kg/h	Kg/n	8
5	PM	10	0.07	0.04	0.09	0.51	1.51	1.86	3.60	3.65	3,83	9.50	3.65	3.5	3.45	9.59	4.02	4.9	4.25	4.08	<u>+</u>
8	NO		2.55	2.41	2.68	4.83	14.82	27.15	84.07	84.72	86.82	32.00	84.78	88.10	82.77	33.44	88.08	40.81	40.1	28.65	ŧ.
7	CONTAM	NANTE	2.33	2.72	2.00	4.00	14.52	27.20	04.01	51.72	55.52	55.25	54.75	55.25	FACTOR	HORA	00.00	40.01	10.2	50.05	±
8	PM		0.1323	0.0756	0.1701	0.3591	0.7370	1.1717	1.5685	1.3228	1.5496	1.4551	1.4929	1.3606	1.3417	1.7575	1.6063	1.7197	1.6819	1.4362	Т
9	PM		0.1087	0.1007	0.1128	0.2054	0.6081	1.1517	1,4859	1,4738	1.5423	1,4456	1,4738	1,4094	1.3933	1.4215	1.6188	1.7315	1,7034	1.6430	1
10	NO		0.1083	0.1023	0.1138	0.2051	0.6081	1.1588	1.4849	1.4743	1.5422	1.4433	1.4747	1.4093	1.3915	1.4199	1.6170	1.7329	1.7027	1.6412	1
11												A	FOROS Y LOP	IGITUD TRA	MOS						÷
12	ID_TRAMO	L_TRAMO (m)	Hora 1	Hora 2	Hora 3	Hora 4	Hora 5	Hora 6	Hora 7	Hora 8	Hora 9	Hora 10	Hora 11	Hora 12	Hora 13	Hora 14	Hora 15	Hora 16	Hora 17	Hora 18	1
13	474	681.00	134	116	179	347	972	1773	2625	2441	2602	2898	2561	2463	2383	2458	2585	2674	2362	2473	4
14	487	1370.00	323	339	332	846	2825	4695	5711	5561	6161	5921	6035	5565	5480	5639	6590	6614	6816	6503	4
16	505	305.00	229	399	223	100	1072	2020	1959	1829	1931	1543	1533	933	1429	367	2252	2490	2974	3165	8
17	745	400.00	112	97	150	292	815	1528	2267	2017	2140	1811	1561	1557	1654	1513	1906	1980	1840	1980	5
18	746	194.00	131	113	175	338	924	1707	2291	1749	2003	2112	2237	2071	2090	2213	2309	2556	2441	1860	4
19	747	204.00	95	65	96	164	117	87	486	421	477	487	727	996	393	538	559	526	568	883	4
20	748	437.00	47	23	50	15	\$13	1367	1603	1589	1577	1646	1717	1752	1503	2152	1650	1858	1714	1521	4
21	749	516.00	25	48	203	1/4	66	1620	2///	21/0	2480	2599	2964	3067	2483	2751	2868	3082	3009	2/43	8
22	750	239.00	534	71	205	303	1128	2895	3870	3605	3717	3457	302	3349	3157	3665	3556	383.8	3528	3301	8
24	752	378.00	370	247	282	309	741	1619	2975	3945	3709	3384	3466	3726	3950	3840	3883	4142	3796	4024	4
25	1029	213.00	182	378	173	190	1385	3387	3562	3418	3508	3189	8250	2685	2932	2519	3912	4348	4638	4490	4
26	1074	101.00	436	208	523	1062	1693	1754	2040	2062	2293	2098	2056	1974	2168	2328	2514	2837	2740	2543	4
27	1075	156.00	267	42752	376	1071	1063	359	948	1151	1367	1472	1477	1913	1587	2994	1467	1265	642	106	4
28 29 Tot	10// tal/Calda 1700)	6141.80	2823	45090	3037	5674	14589	26046	34954	95974	36943	34506	35193	34251	34156	35831	39002	40956	39337	380.60	4
30	tar (celou 1700)	Emisión e/is	*m^2)		5557	2074		20040		00014	00040		00000	04202	54255	00000	00002	40000	00001		1
31	ID_TRAMO	PM10	PM2.5	NOX																	
32	474	1.323E-05	6.210E-05	5.889E-04																	
33	487	1.634E-05	7.666E-05	7.270E-04																	
34	505	4.673E-05	2.1955-04	2.060E-03																	
36	745	1.688E-05	7.924E-05	7.515E-04																	
37	746	5 573E-05	2 616E-04	2 480E-03																	1 -
	E.	CELDA1700	CELDA 1	760 CEL	DA 2296	÷						1	4								Þ
Listo	10															E		<u> </u>	1	+ 79	%

Figura 22. Estimación de emisiones para las vías de la celda 1700. Fuentes: Mapa Google Earth /plataforma MODEAM (http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id =175<emid=603#mapa-de-emisiones).

Para estimar las emisiones lineales de las diferentes vías se asumió que en promedio todos los vehículos emiten la misma cantidad de contaminantes, lo cual está un poco alejado de la realidad, porque existe evidencia que las volquetas, camiones, buses, vehículos etc., generan diferentes niveles de emisiones (referencia). Para subsanar esta situación se asumió que por todas las vías viajan la misma proporción de vehículos según su tipo (; si por una vía que tiene un aforo de 3000 vehículos/hora viajan 50 volquetas, por otra con un aforo de 300 vehículos/hora se espera que la cantidad que transite sea de 5 volquetas, y así sucesivamente para los restantes tipos de vehículos). Dicha aproximación fue necesaria ante la falta de información de aforos por tipo de vehículo. La aproximación realizada genera que, al estimar las emisiones para algunas vías, los valores calculados sean superiores o inferiores a los reales.

Fuente: plataforma MODEAM, Universidad Pontificia Bolivariana sede Medellín.

4.4 Desarrollo del modelo de dispersión

Una descripción detallada de las etapas involucradas en el modelo de dispersión AERMOD, se muestran en la **Figura 24**. Las principales etapas son:

Paso 1: Uso de la herramienta **AERMET** (Preprocesador Meteorológico), para la generación de los archivos Surface (.SFC) y Profiles (.PLF), para los cuales se emplea como entradas los archivos: Upper air (Radiosondas), Suface data (estación meteorológica) y Surface characteristics (Usos del suelo y tipo de cobertura utilizando la herramienta **AERSURFACE**) y el archivo Hourly averaged winds (creado usando la aplicación **AERMINUTE**, la cual utiliza como insumos de entrada la velocidad del viento tomada cada minuto). La información de **AERMINUTE** y **AERSURFACE** dan como salida los parámetros albedo (que es la cantidad de radiación solar reflejada por la superficie, se representa con el símbolo r), la razón Bowen (razón entre el calor sensible y latente, se representa con el

símbolo B_0) y la longitud de rugosidad de la superficie (parámetro que relaciona como el uso de la tierra interrumpe vientos suaves que fluyen en la superficie, se representa con el símbolo z_0).

Paso 2: Empleo de la herramienta **AERMAP** (Preprocesador de terreno) la cual usa la información del terreno (generalmente un archivo. DEM), la localización de los receptores y de las fuentes, y da como salida la ubicación y elevaciones de los receptores y fuentes.

Paso 3: Empleo de la herramienta **BPPIPRIME** (Building Profile Input Program for PRIME), la cual usa la información de las dimensiones de estructuras (edificios, casas, bodegas, estadios, etc.), y da como salida las dimensiones proyectadas de las construcciones ingresadas.

Paso 4: Ingreso de las concentraciones de fondo y de las emisiones generadas (estimadas en el numeral 4.2.7). Esta información, más los criterios de normatividad son empleados por la herramienta AERMOD para estimar las concentraciones y los grados de cumplimiento.

Figura 24. Etapas de la implementación del modelo de dispersión AERMOD para modelar concentraciones de contaminantes atmosféricos y establecer posibles escenarios de contaminación. Fuente: Environmental Protection Agency, (US EPA).

Para el desarrollo de las etapas descritas se empleó la herramienta comercial AERMOD/ISC de la empresa BREEZE, de la cual se muestra la interfaz en la Figura 25.

Figura 25. Interfaz de la aplicación AERMOD/ISC de BREEZE en el modelo de dispersión para el Valle de Aburrá.

4.4.1 Preprocesador meteorológico AERMET

AERMET proporciona un preprocesador meteorológico de propósito general para la organización de los datos meteorológicos disponibles en un formato adecuado para su uso en el modelo de dispersión de la calidad del aire AERMOD (20). Los parámetros estimados por AERMET incluyen:

Flujo de calor sensible, H ó q (W/m^2).

Velocidad de fricción de superficie, u* (m/s).

Escala de velocidad convectiva, w* (m/s).

Gradiente vertical de temperatura potencial en una capa a 500 m sobre la capa límite planetaria (K/m).

Altura de mezclado convectiva, z_{ic} (m).

Altura de mezclado mecánica, z_{im} (m).

Longitud de Monin-Obukhov, L (m).

Longitud de la rugosidad superficial, z_{\circ} (m).

Razón de Bowen, B_O (Adimensional).

Albedo, r ([]) (Adimensional).

Los demás parámetros incluidos en los archivos Surface y Profile son medidos directamente por la estación meteorológica o la radiosonda empleada, entre los cuales se tienen:

Year, año en formato, yy (ejemplo, para 2016 queda 16).

Month, mes (1-12).

Day, día (1-31).

Julian day, dia juliano (1-366).

Hour, hora (1-24).

Velocidad del viento, u (m/s).

Dirección del viento (°) (1-360).

Altura a la cual se mide la velocidad y la temperatura, z_m (m).

Temperatura usada para estimar los parámetros, T (K).

% de humedad relativa, %HR.

Presión barométrica, Pb (mb).

Precipitación, P (mm).

Nubosidad, n (adimensional).

En la Figura 26 se muestran los archivos de Surface y Profile generados por el preprocesador meteorológico AERMET. La versión utilizada para éste trabajo correspondió a la 15181, considerada como la última emitida por US EPA y soportada por el software AERMOD/ISC de BREEZE.

Unit bit line Unit bit	-			_
Andre Linde Number Variant Number Var	Surface: Bloc de notas		- 🗆 🧟 Profile: Bloc de notes -	
0.2.00 7.4.00 W.10 0.000 0.000 7.4.00 W.10 0.000 Y.10 W.10 W.10 W.10 <	Archivo Edición Formato Ver Ayuda		Archivo Edición Formato Ver Ayuda	
13 14 1	6.26N 75.44W UA_ID: 00012345 SF_ID:	12345 O5_ID: 99999 VERSION: 15181 BULKRN	15 1 1 1 10 0 23,4 2,2 294,1 -99,0 -9	99.0
1 1	15 1 1 1 1 -27.0 0.430 -9.000 -9.000 -999. 649.	. 100.9 1.0000 1.00 1.00 2.21 23.4 12.0 294.1 12.0	.0 0 0.00 80. 855.15 1 1 1 1 50 0 -999.0 5.5 293.9 -99.0 -9	99.0
10 1	15 1 1 1 2 -27.1 8.983 -9.000 -9.000 -999. 2248.	. 331.6 1.0000 1.00 1.00 2.60 14.4 12.0 293.8 12.0		99.8
10 1	15 1 1 1 3 -27.3 8.549 -9.888 -9.888 -999. 935.	. 192.7 1.0000 1.00 1.00 2.12 10.1 12.0 293.4 12.0	.8 8 8.88 79. 854 15 1 1 Z 18 8 14.4 Z.5 Z3.8 -99.8 -9	99.8
15 1	15 1 1 1 4 -27.5 0.250 -9.000 -9.000 -999. 254.	. 51.9 1.0000 1.00 1.00 1.70 /1.9 12.0 295.5 12.0	0 0 0.00 /9, 034 15 1 1 2 30 0 -399,0 4,1 233,0 -39,0 - 9	99.0
10 1	15 1 1 1 5 -27.4 0.255 -9.000 -9.000 -999. 295.	13 / 1 0000 1 00 0 6/ 0 71 53 5 13 0 203 5 13 0	10 0 0.000 19, 035, 15 1 1 2 1000 1 -999,0 6.0 293,2 -99,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99.0
15 1	15 1 1 1 7 6.5 8.104 8.245 8.801 71. 77.	12.9 1.0000 1.00 0.30 0.52 53.1 12.0 291.9 12.0		99.0
15 1	15 1 1 1 8 81.8 0.251 1.028 0.007 421, 145.	-111.1 1.0000 1.00 0.21 0.55 319.2 12.0 291.7 12.0	8 8 8 8 8 8 1 1 1 3 108 1 -999 8 3 9 293 8 -99 8 - C	99.8
15 1	15 1 1 1 9 138.7 0.397 0.942 0.002 191. 363.	103.8 1.0000 1.00 0.19 0.87 58.2 12.0 293.2 12.0	.8 0 8.00 73. 855.15 1 1 4 10 0 71.9 1.8 293.3 -99.8 -	99.0
15 1 11 12007 1 11 2200 170 100 170 0.00 1.00	15 1 1 1 10 191.9 0.791 1.535 0.001 593. 1440.	149.3 1.0000 1.00 0.18 1.78 69.4 12.0 294.4 12.0	.0 0 0.00 65, 856, 15 1 1 4 50 0 -999,0 2.8 293,2 -99,0 -	99.8
15 1 12 22-5.6 0.75 1.85 0.80 98.4 134.4 12.2 1.080 1.0 1.0 0 0.80 45.5 15 1 1 5 10 0 6.60 45.5 15 1 1 5 10 0 6.60 45.5 15 1 1 5 10 0 6.70 42.1	15 1 1 1 11 220.7 1.001 1.753 0.001 762. 2304.	164.2 1.0000 1.00 0.18 2.27 65.8 12.0 297.0 12.0	.0 0 0.00 53. 856 15 1 1 4 100 1 -999.0 3.3 292.9 -99.0 -9	99.0
15 1 13 1202.1 0.868 1.59 0.808 121 1.1 1.5 5 00 0 -0.99 2.4 2.51 -9.9 9.9 15 1 1.1 1.5	15 1 1 1 12 229.9 8.776 1.885 8.808 984. 1384.	122.2 1.0000 1.00 0.18 1.72 63.6 12.0 298.3 12.0	.0 0 0.00 45. 855. 15 1 1 5 10 0 66.7 1.5 293.1 -99.0 -5	99.0
15 1 14 19.5 0.76 1.999 0.75 1.999.0 2.97 2.97.0 9.90 9.0 95.0 15 1 1 5 100 1 9.90 2.97 2.90 9.90	15 1 1 1 13 222.1 0.068 1.950 0.000 1031. 11.	11.2 1.0000 1.00 0.18 0.10 125.5 12.0 299.6 12.0	.8 0 8.00 42. 854.15 1 1 5 50 0 -999.8 2.4 293.1 -99.8 -5	99.0
15 1 1.5 1.5 1.6.8 0.6.90 1.7 1.2.6 0.6.90 5.8 82.1 1 1 6 500 0 92.5 0.7 92.6 99.0 15 1 1.5 1	15 1 1 1 14 196.3 0.176 1.959 0.001 1175. 71.	32.4 1.0000 1.00 0.18 0.32 11.1 12.0 301.0 12.0	.0 0 0.00 39. 853 15 1 1 5 100 1 -999.0 2.9 292.7 -99.0 -9	99.0
1 1 1 1 1 1 1 1 1 1 1 6 50 0 0 1	15 1 1 1 15 154.8 0.038 1.848 0.001 1243. 3.	8.9 1.0000 1.00 0.19 0.05 177.7 12.0 302.7 12.0	.0 0 0.00 35. 852. 15 1 1 6 10 0 52.5 0.7 292.5 -99.0 -9	99.0
15 1 1.7 88.4 1.077 1.187 0.080 1.989.0 1.5 1.0 1.0 0.09 1.5 1.0 1.0 0.00 5.5 1.0 1.0 0.00 5.5 1.0 1.0 0.00 5.0 1.0 1.0 0.00 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 0.0 5.0 0.0 <td>15 1 1 1 16 100.4 0.411 1.635 0.001 1327. 389.</td> <td>148.3 1.0000 1.00 0.21 0.93 55.2 12.0 302.5 12.0</td> <td>.0 0 0.00 34. 851 15 1 1 6 50 0 -999.0 1.1 292.7 -99.0 -9</td> <td>99.8</td>	15 1 1 1 16 100.4 0.411 1.635 0.001 1327. 389.	148.3 1.0000 1.00 0.21 0.93 55.2 12.0 302.5 12.0	.0 0 0.00 34. 851 15 1 1 6 50 0 -999.0 1.1 292.7 -99.0 -9	99.8
15 1 1.3 -2.1.6 0.7.5 -9.000 -9.0	15 1 1 1 17 38.4 1.077 1.187 0.001 1334. 2667.	1015.0 1.0000 1.00 0.30 2.63 41.7 12.0 301.0 12.0	.0 0 0.00 35. 850 15 1 1 6 100 1 -999.0 1.3 292.4 -99.8 -9	99.0
1 1 1 1 1 1 1 1 7 50 0 -999 0 <td>15 1 1 1 18 -21.6 0.745 -9.000 -9.000 -999. 1479.</td> <td>. 190.7 1.0000 1.00 0.64 2.07 48.3 12.0 302.0 12.0</td> <td>.0 0 0.00 25. 850 15 1 1 7 10 0 53.1 0.5 291.9 -99.0 -9</td> <td>99.0</td>	15 1 1 1 18 -21.6 0.745 -9.000 -9.000 -999. 1479.	. 190.7 1.0000 1.00 0.64 2.07 48.3 12.0 302.0 12.0	.0 0 0.00 25. 850 15 1 1 7 10 0 53.1 0.5 291.9 -99.0 -9	99.0
1 1 1 1 1 1 1 1 1 1 7 1 1 7 1 1 7 1	15 1 1 1 19 -23.9 8.208 -9.000 -9.000 -999. 219.	. 18.2 1.0000 1.00 1.00 1.04 100.6 12.0 300.5 12.0	.0 0 0.00 20. 851 15 1 1 7 50 0 -999.0 0.8 292.5 -99.0 -9	99.0
11 1	15 1 1 1 20 -26.2 0.193 -9.000 -9.000 -999. 195.	. 16.8 1.0000 1.00 1.00 0.96 281.2 12.0 295.9 12.0	.0 0 0.00 39. 852 15 1 1 7 100 1 -999.0 1.0 292.2 -99.8 -9	99.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 30 0 -999,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 -99,0 99,0 0 227,7 99,0 99,0 0 227,7 99,0 99,0 0 299,0 99,0 0 299,0 99,0 0 299,0 99,0 0 299,0 99,0 0 299,0 99,0 0 299,0 99,0 0 299,0 99,0 0 299,0 99,0 0 99,0 99,0 0 99,0 99,0 99,0 99,0 99,0 99,0 99,0 99,0 99,0 99,0<	15 1 1 1 21 -26.1 0.124 -9.000 -9.000 -999. 101.	. 10.8 1.0000 1.00 1.00 0.62 354.6 12.0 296.2 12.0	.0 0 0.00 52. 853 15 1 1 8 10 0 319.2 0.6 291.7 -99.0 -9	99.0
11 1	15 1 1 1 22 -26.4 0.128 -9.000 -9.000 -999. 105.	, 11.2 1.0000 1.00 1.00 0.64 10.1 12.0 295.4 12.0	0 0 0.00 b0. 854 15 1 1 8 50 0 -999,0 0.9 292,7 -99,0 -9	99.0
11 1	15 1 1 1 23 -26.7 0.575 -9.000 -9.000 -999. 1004.	. 113.7 1.0000 1.00 1.00 1.71 64.4 12.0 294.8 12.0	.0 0 0.00 72. 854 15 1 1 8 100 1 -999.0 1.0 292.3 -99.0 -9	99.8
11 1 2 1	15 1 1 1 24 -26.9 0.375 -9.000 -9.000 -999. 527.	, 213.1 1.0000 1.00 1.00 1.40 72.7 12.0 294.3 12.0	.0 0 0.00 76 854 15 1 1 9 10 0 56.2 0.9 253.2 -99.0 9	99.0
11 1 2 1 1.7.7.8 10.744 1.0744 <td>15 1 2 2 1 -27.2 0.575 -9.000 -9.000 -999. 1004.</td> <td>. 115.7 1.0000 1.00 1.00 1.71 11.9 12.0 295.5 12.0</td> <td>.0 0 0.00 /9, 034,15 1 1 9 30 0 -399,0 1,4 233,2 -39,0 9</td> <td>99.0</td>	15 1 2 2 1 -27.2 0.575 -9.000 -9.000 -999. 1004.	. 115.7 1.0000 1.00 1.00 1.71 11.9 12.0 295.5 12.0	.0 0 0.00 /9, 034,15 1 1 9 30 0 -399,0 1,4 233,2 -39,0 9	99.0
11 1 2 1 -17.7 0.082 -5.088 -5.088 -5.088 -5.088 -5.088 -5.088 -5.088 -5.088 -5.088 -5.088 -5.088 -5.18 1 1 1.09 0	15 1 2 2 2 -27.4 0.052 -5.000 -5.000 -595. 54.	. 29.6 1.0000 1.00 1.00 0.93 33.7 12.0 293.1 12.0		99.0
15 1 2 2 3 -72.6 1:307 - 5:008 - 5:008 - 5:008 - 5:008 - 5:008 - 5:008 - 5:00	15 1 2 2 3 -27.8 0.034 -3.000 -3.000 -355. 28.	. 4.7 1.0000 1.00 1.00 0.27 12.3 12.0 291.9 12.0 9.2 1.0009 1.00 1.00 9.01 111 4 12.0 202.3 12.0	0 0 0.00 61. 635. 15 1 1 10 10 0 05.4 1.6 234.4 -55.0 5 6 6 6 6 6 72 853 15 1 1 16 56 6 -000 6 2 8 304.0 -00 6 .0	99.0 99.8
15 1 2 2 6 -5.6 1.837 5.000 -3.000 <	15 1 2 2 5	0 3 1 0000 1 00 1 00 0 01 1114 1210 29215 1210		99.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15 1 7 7 6 .76 1 8 187 .9 888 .9 889 .999 555	167 9 1 8888 1 88 8 64 1 58 32 8 12 8 292 6 12 8	8 8 8 8 9 7 3 8 5 3 1 5 1 1 1 1 1 1 9 8 6 5 8 7 3 7 9 7 8 9 9 8 7	99.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 7 6.7 0.121 0.272 0.006 95. 96.	14.9 1.0000 1.00 0.30 0.60 22.0 12.0 291.8 12.0	.0 0 0.00 75, 854 15 1 1 1 15 0 0 -999,0 5,6 295,8 -99,0 -9	99.8
15 1 2 2 1 12.6 0 12.6 0 12.6 0 0 0.68 4.4 0.69 14.5 1 1 12 0 0 0.5.6 1.7 2.9.8 9.9.8 15 1 2 1.9 1.9 0 0.6.0 1.4 0.6.0 1.9 1.0 12 2.0 0 0.99.8 0 0.99.8 0 0.99.8 0 0.99.8 0 0.99.8 0 0.99.8 0 0.99.8 0 0.99.8 0 0 0.99.8 <td>15 1 2 2 8 67.6 0.231 0.761 0.001 208, 122</td> <td>123.5 1.0000 1.00 0.21 0.51 282.2 12.0 290.6 12.0</td> <td>.0 0 0.00 79. 854 15 1 1 11 100 1 -999.0 4.2 295.1 -99.0 -</td> <td>99.8</td>	15 1 2 2 8 67.6 0.231 0.761 0.001 208, 122	123.5 1.0000 1.00 0.21 0.51 282.2 12.0 290.6 12.0	.0 0 0.00 79. 854 15 1 1 11 100 1 -999.0 4.2 295.1 -99.0 -	99.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15 1 2 2 9 152.6 0.711 1.254 0.001 407. 1162.	168.6 1.0000 1.00 0.19 1.62 57.1 12.0 294.3 12.0	.8 0 8.00 64, 855 15 1 1 12 10 0 63.6 1.7 298.3 -99.8 -	99.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 18 195.3 8.918 1.546 8.891 591. 1938.	178,2 1,0000 1,00 0,18 2,09 52,6 12,0 296,4 12,0	.0 0 0.00 51, 855, 15 1 1 12 50 0 -999,0 2,7 296,3 -99,0 -	99.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 11 220.0 0.616 1.750 0.000 757. 874.	101.4 1.0000 1.00 0.18 1.34 60.6 12.0 298.3 12.0	.0 0 0.00 39. 855. 15 1 1 12 100 1 -999.0 3.2 295.5 -99.0 -9	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 12 229.1 0.941 1.906 0.001 934. 2038.	148.7 1.0000 1.00 0.18 2.12 109.6 12.0 299.5 12.0	.0 0 0.00 31. 855. 15 1 1 13 10 0 125.5 0.1 299.6 -99.0 -5	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 13 219.2 1.109 1.956 0.001 1052. 2828.	183.2 1.0000 1.00 0.18 2.54 101.2 12.0 300.5 12.0	.0 0 0.00 28. 854.15 1 1 13 50 0 -999.0 0.2 297.5 -99.0 -9	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 14 194.4 1.159 1.943 0.001 1159. 3092.	216.0 1.0000 1.00 0.18 2.68 100.1 12.0 301.1 12.0	.0 0 0.00 26. 853, 15 1 1 13 100 1 -999.0 0.2 296.7 -99.0 -9	99.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15 1 2 2 15 153.8 1.318 1.840 0.001 1242. 3995.	310.2 1.0000 1.00 0.19 3.11 103.1 12.0 301.1 12.0	.0 0 0.00 27. 852.15 1 1 14 10 0 11.1 0.3 301.0 -99.0 -9	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 16 99.8 1.205 1.619 0.001 1300. 3341.	437.4 1.0000 1.00 0.21 2.89 98.4 12.0 301.6 12.0	.0 0 0.00 27. 851 15 1 1 14 50 0 -999.0 0.5 298.6 -99.0 -9	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 17 35.0 1.032 1.157 0.001 1351. 2450.	1067.6 1.0000 1.00 0.30 2.52 105.8 12.0 301.8 12.0	.0 0 0.00 27. 851 15 1 1 14 100 1 -999.0 0.6 297.7 -99.0 -9	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 18 -22.3 1.136 -9.000 -9.000 -999. 2783.	. 442.9 1.0000 1.00 0.64 2.96 105.4 12.0 300.6 12.0	.0 0 0.00 27. 851 15 1 1 15 10 0 177.7 0.1 302.7 -99.0 -9	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 19 -24.2 1.047 -9.000 -9.000 -999. 2463.	. 376.2 1.0000 1.00 1.00 2.75 92.2 12.0 300.0 12.0	.e e e.ee 28. 851.15 1 1 15 50 0 -999.8 0.1 299.5 -99.8 -9	99.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 2 20 -25.2 0.178 -9.000 -9.000 -999. 172.	. 15.5 1.0000 1.00 1.00 0.88 101.5 12.0 298.0 12.0	.0 0 0.00 33. 852.15 1 1 15 100 1 -999.0 0.1 298.5 -99.0 -9	99.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 2 Z Z1 -Z0.0 0.116 -9.800 -9.800 -999. 91.	. 10.1 1.0000 1.00 1.00 0.58 336.5 12.0 296.4 12.0	0 0 0.00 59. 855.15 1 1 10 10 0 55.2 0.9 302.5 -99.0 -9	99.0
15 1 2 4 4 -R-, f 0 0 -99.8 -97.8 -99.	15 1 x x 22 -26.5 0.176 -9.888 -9.488 -9.99. 170.	. b/./ 1.0000 1.00 1.00 1.13 15.0 12.0 295.6 12.0	w w w.ww co. mss.15 1 1 16 50 0 -999.0 1.5 299.8 -99.0 -9	99.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 1 Z Z Z -Zb./ 8.662 -9.800 -9.800 -999. 1248.	. 158.7 1.8888 1.88 1.88 1.89 78.9 12.8 294.7 12.8	.e e e.ee 56. 854.15 1 1 16 100 1 -999.8 1.7 299.8 -99.8 -9	99.8
12 1 2 2 1 - 27.1 0.000 - 3000 - 399, 000 - 399, 1397, 1397, 1397, 1407 1400 140 140 140 140 140 140 140 140 14	15 1 2 2 24 -20.5 0.737 -9.000 -9.000 -999. 1435.	, 100.5 1.0000 1.00 1.00 2.05 59.9 12.0 294.2 12.0	.v v v.vv v.v v. v.v v.v v.v v.v v.v v.	99.0
1 1 2 3 3 1 - 2.7 (10.10) - 2.000 - 2.000 - 2.000 - 2.00 - 0.0 1 - 2.1 - 2.000 - 1.00 - 0.0 1 - 2.1 - 2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 1 3 3 1 -2/.1 0.080 -9.000 -9.000 -999. 150/.	. 101.7 1.0000 1.00 1.00 1.94 /0.8 12.0 295.7 12.0	.0 0 0.00 05. 055.15 1 1 1 1/ 50 0 -999,0 4.1 500,2 -99,0 -9	99.0
1 3 3 5 5 - 0 - 1 0 1 5 5 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	15 1 3 3 3 2 -2/.7 0.102 -9.000 -9.000 -999. 73.	. 0.2 1.0000 1.00 1.00 0.51 7.5 12.0 252.4 12.0 16 0 1.0000 1.00 1.00 0.06 314 4 13 0 301 3 13 0	0 0 0.00 /0. 029.12 1 1 1 100 1 -333.0 4.3 233.2 -33.0 -3 0 0 0 0 73 064 11 1 1 10 10 0 40 3 71 307.0 00 0 0	00.0
	15 1 3 3 4 -28.4 8.143 -9.800 -9.800 -999. 199.	12.5 1.8988 1.88 1.88 8.71 276.4 12.8 208.3 12.8	0 0 0.00 76. 075 17 1 1 10 10 0 40.3 2.1 302.0 -33.0 -3	99.8

Figura 26. Archivos de salida entregados por el preprocesador meteorológico AERMET para la organización de los datos. Fuente: Environmental Protection Agency, (US EPA).

4.4.2 Preprocesador de terreno AERMAP

AERMAP es un preprocesador de terreno para AERMOD, el cual procesa datos de elevación digital disponibles comercialmente y crea un archivo adecuado para su uso dentro de un archivo de control AERMOD. Este archivo contendrá factores de elevación y de escalado de la colina de altura para cada receptor involucrado dentro del estudio de dispersión del aire. En la Figura 27, se muestra una imagen del área del Valle de Aburrá, donde se puede observar la elevación del terreno, información utilizada por la Aplicación GlobalMapper 18, para generar el archivo de elevación del terreno (.DEM). La información de elevación del terreno se descarga vía online desde la dirección: <u>http://asterweb.jpl.nasa.gov/gdem.asp</u>, donde se encuentra disponible el servicio de la NASA denominado ASTER Global Digital Elevation Map Announcement (ASTER GDEM).

Figura 27. Vista de la elevación digital del terreno (DEM) para la zona a ser modelada mediante el uso del AERMOD. Fuente: Global Mapper-NASA.

En la Figura 28, se muestra la salida entregada por el preprocesador de terreno AERMAP, el cual se corrió en la interface suministrada por la aplicación BREEZE AERMOD.

epons	Report
Output file DEM details file	** AERMAP - VERSION 11103 10/20/17
DEN adjacency file Domain details file Receptor file Source file (includes buildings)	** BREEZE AERMOD ** Trinity Consultants ** VERSION 7.11
	CO STARTING "HILHTS 1 CO TITLEONE MODELO DISPERSION AMVA CO TERRHGTS EXTRACT CO DATAFILE "E\Diopoox\AMVA20~1\MDDELD~1\VARIOS\DEM_AMVA.DEM" CO ANCHORXY 0 0 0 18 3 CO AUCHORXY 0 0 0 18 3 CO FINISHED
	SO STARTING SO ELEVUNIT METERS SO LOCATION 708M0TZ POINT 434134.74 684737.29
	SICUESUR FF-1 SO LOCATION 708IM0U0 POINT 434119.41 684768.02 "SRCDESCR FF-2
	SO LOCATION /08/M001 POINT 435886.82 58/23/.// ** SRCDESCR FF-3 SO LOCATION /08/M002 POINT 435512.70 588643.60
	1" SRCDESCR FF-4 SO LOCATION 708IM0U3 POINT 444067.04 702233.33 " SRCDESCR FE-5
	SO LOCATION 708IM0U4 POINT 432966.55 681747.61 ** SRCDESCR FF-7
	SO LOCATION 7/08/M0/05 POINT 432966.55 681747.61

La Figura 29 y Figura 30 muestran las entradas de las fuentes y los receptores utilizados como entradas por el AERMAP.

Hanna Protect Dista	Marc	2D Becarda								
	мер	SU NEDORS								
Options * 3 Edit Objects	1200									
Objects * - Nonly Original	-									
Anayers : Og sande unanges	AT FOR	Jels -								
Model Data	Entry									
Project	1	/ Index	ID	Description	X coordinate	Y coordinate	Elevation	Emission rate	Stack height	Stack temp
Sources					m	m	meters	g's	meters	к
8 Point	1	1	708IM0TZ	FF-1	434134 74	684737.29	1518.23	0.22447907	33	
- Harzontel noist	2	2	708IM0U0	FF-2	434119.41	684768.02	1520.11	0.22447907	33	
- Area	3	3	708IM0U1	FF-3	435886 82	687237 77	1496.6	0.01349147	15.5	
Croular area	4	4	706IM0U2	FF-4	435612 70	688643 60	1494,63	0.01115467	17	
- Bolygon area	5	5	708IM0U3	FF-5	444067.04	702233.33	1433.4	0.01128378	15	
Volume	6	6	708IM0U4	FF-7	432966 55	681747.61	1560.36	0.06394399	22.67	
Open pit	7	7	708IM0U5	FF-8	432966.55	681747.61	1560.36	0.05231781	24	
BREEZE Line	8	8	708IM0U6	FF-9	436047.30	688420.18	1486.93	0.04058594	21	
EPA Line	9	9	708IM0U7	FF-13	431597.36	680999 28	1583.14	0.00934982	30	
Buoyant Line	10	10	708IM0U8	FF-15	431304.15	680745.05	1591.84	0.01232776	20	
E Receptors	11	11	708IM0U9	FF-16	431304.15	680745.05	1591.84	0.01313191	20	
- Discrete	12	12	708IMOUA	FF-17	431304.15	680745.05	1591.84	0.01718848	20	
Boundary receptors	13	13	708IM0UB	FF-20	434629.63	686190.78	1519.26	0.00944971	15	
Gidded recentor networks	14	14	708IMOUC	FF-23	435051.85	692778.80	1508.32	0.00665863	19.7	
- III Uniform Cartesian	15	15	708IMOUD	FF-25	436538 42	694081.65	1472.18	0.01094267	15	
- 🛄 Non-Uniform Cartesian	16	16	700IM0UE	FF-33	429252.88	673279.45	1765.53	0.06064542	15	
- 🛞 Uniform polar	17	17	708IM0UF	FF-34	429252.88	673279.45	1765.53	0.01509443	15	
- 🕞 Non-Uniform polar	18	18	708IM0UG	FF-35	429252.88	673279.45	1765.53	0.01174448	15	
Buildings	19	19	700IM0UH	FF-36	429252.88	673279.45	1765.53	0.00013950	15	
Croular	20	- 20	708IM0UI	FF-37	429252.88	673279.45	1765.53	0.00988639	15	
Polygon	21	21	708IMOUU	FF-38	429252.88	673279.45	1765.53	0.04165343	15	
🛄 Other	22	22	709IM0UK	FF-39	429252.88	673279.45	1765.53	0.10836379	15	
· @ Annotation										

Figura 29. Fuentes ingresadas en la aplicación AERMOD para ser utilizadas por el AERMAP.

na * 🤣 liph Charges na * 🎯 Lancel Charges	An Dealer Colo	(0)						
deat	Inde	ex ID	Description	X coordinate	Y coordinate	Elevation	Hill height scale	Sensitive
Sources				m	m	metera	matera	
8 Point	1	1 01	UNINV	436179.4	692354.5	1468.62	5752.3	0
Hotzontal point	2	2 D2	CANCHA_UNNV	436331.7	692469	1463.81	5752.3	0
Area	3	3 D3	BLOQUE_UDEA	436954.8	692406.5	1469.5	5752.3	0
Orcular area	4	4 D4	CHAGUALO	436943.2	692087.8	1472.8	5752.3	0
Polygon area	5	5 D5	MINORISTA	436529.8	691675.5	1468.34	5752.3	0
Volume Volume	Б	6 D6	SECTOR_CUNDI	437096.8	691868	1482 57	5752 3	0
Cipen pt	7	7 07	CE-RESTREPO	436232.1	691759.6	1479.33	5752.3	0
BREEZE Line	B	8 D8	MANT	436968.4	691156.9	1483.68	5752.3	0
EPA Line	9	9 D9	CR54 54	436871.7	691454.5	1477.27	5752.3	0
/ Buoyant Line	10	10 D10	USB	436527.7	691315.7	1484.89	5752.3	0
Receptors	11	11 D11	HUECD	435802.2	690872.6	1495 31	5752.3	0
Discrete	12	12 D12	EST CIS	436322.6	690609.7	1471.17	5752.3	0
Boundary receptors	13	13 013	CRSV	432847.4	682209.3	1568.9	5752.3	0
Gridded recentor setworks	14	14 D14	ITA CEDA1760 1	432459.3	682340.3	1575.86	5752.3	0
III Uniform Cartesian	15	15 D15	ITA CEDA1760 2	432827.5	682507.9	1563.84	5752 3	0
Non-uniform Cartesian	16	15 D16	ITA CEDA1760 3	432893.8	682040.1	1557 11	5752 3	0
🖗 Uniform polar	17	17 D17	ITA CEDA1760 4	432439.4	681943.9	1573.74	5752.3	0
(go Non-unform palar Buidinge Ø Rectangular G Circular Ø Polygon Other								P.

Figura 30. Receptores ingresados en la aplicación AERMOD para ser utilizadas por el AERMAP.

4.4.3 Corrida del modelo AERMOD

Una vez se ha ingresado toda la información requerida para correr el modelo (Model Run), la aplicación BREEZE AERMOD muestra la ventana expuesta en la Figura 31.

Figura 31. Ventana de la aplicación BREEZE AERMOD para iniciar el modelo de dispersión.

Una vez terminado de correr el modelo AERMOD, la aplicación despliega una ventana de confirmación donde se indica que la corrida del modelo fue satisfactoria, Figura 32. Mientras la Figura 33, muestra los resultados de salida de la corrida, los cuales incluyen archivos de resumen (summary file) y las concentraciones máximas estimadas para los receptores, entre otros.

Description (double-click to	open)	BREEZE AER	NOD					ition	ID	
		?	Model run Vould yo	i completed u like to clos	successfull se the dashl	ly. board no	w?			
				Sí		No				
	Display									
	Now Now	Processin Processin	g Data g Data	For Day For Day	No. 10 No. 10	00 of 01 of	2016 2016			^
Parallel processor settings	Now Now	Processin Processin Processin	g Data g Data g Data	For Day For Day	No. 10 No. 10	02 of 03 of	2016 2016 2016			
Total processors on this 4 machine	Now	Processin Processin	y Data y Data	For Day For Day	No. 10 No. 10	05 of 06 of	2016 2016			
Licensed processors for this 8 machine	Now Now	Processin Processin	g Data g Data	For Day For Day	No. 10 No. 10	07 of 08 of	2016 2016 2016			
Processors to use for this 4 model run	V Now Now	Processin Processin	y Data y Data	For Day For Day	No. 11 No. 11	10 of	2016 2016			
itatus	Now Now	Processin Processin Processin	g Data g Data g Data	For Day For Day	No. 11 No. 11	13 Of 13 Of 14 of	2016 2016 2016			
Model run completed successfully.	Now	Processin Processin	y Data y Data	For Day For Day	No. 11 No. 11	15 of 16 of	2016 2016			
Model run elapsed time 00:19:50 (nh.mm ss)	Now Now Now Now Run	Processin Processin Processin Processin Processin completed	g Data g Data g Data g Data g Data g Data succes	For Day For Day For Day For Day For Day safully	No. 11 No. 11 No. 11 No. 12 No. 12	17 of 18 of 19 of 20 of 21 of	2016 2016 2016 2016 2016			

Figura 32. Confirmación de corrida del modelo BREEZE AERMOD (Model Run)

Home Project Data (Map 3D	Repor	Rep	orts - BREEZE	AERMOD - PN	/l2.5_mod	el_dispersi	on-end-CEL	DAS.ami			-	
Optons * Objacts * Analysis * Madel PM2.5_model_depension end-CEL Run PM2.5_model_depension end-CEL Run Service summary			DEE7		MOD	Mad		ocult					
Sensitive receptor summary Aemap input file Aemap output file Aemap map detai file		Max	. Annual (1 YEARS)	Results of	Polluta	nt: PM2	5 (ug/m	**3)				
Aermap receptor file	Group ID	High	Avg. Conc.	U East (m)	TM North (m)	Elev.	Hill Ht. (m)	Flag Ht.	Rec. Type	Grid 1D	,		
Aermod input file	ALL	15T	119.57631	43 6322 60	690809.10	1471.17	5752.30	0.00	DC				
Aermod output file	1000000	ZND	52.11405	436968.40	691156.90	1483.08	5752.30	0.00	DC.				
MP PROFILE PEI		3RD	54.50383	436802.20	690\$72.\$0	1405.31	5752.30	6.00	DC				
Sensitive receptor file		4TH	53.44625	436527.70	691315.70	1484.89	5752.30	0.00	DC				
565 55		3TH	51,50413	436871.70	6914 <u>5</u> 4.10	1477.27	5752.30	0.00	DC	1	-		
		OTH	40.17970	436179.40	692354.50	1468.62	5752.30	0.00	DC				
		7TH	39.32105	436520.80	601675.50	1468.34	5752.30	0.00	DC				
		8TH	38.37780	436331.70	692469.00	1463.81	5752.30	0.00	DC				
		9TH	37.55985	436232.10	691139.60	1479.33	5752.30	0.00	DC				
		10TH	35.12662	437096.80	691\$68.00	1482.57	5752.30	0.00	DC				
				lighest R	esults of Po	ollutant	: PM25				- 1		
	A	C +0			Date	UT	M 8	Elev. Hill Hi	Flag	Rer Crit	a		
										A REAL PROPERTY AND INC.			

Figura 33. Ventana de la aplicación BREEZE AERMOD, con los resultados de la corrida del modelo.

4.5 Construcción de mapas regionales de la contaminación

Para la generación de mapas que reflejen la distribución espacial y temporal de la contaminación dentro del Valle de Aburrá, se pueden implementar diferentes estrategias entre las que se destacan los modelos de dispersión e interpolación espacial. Esta última se caracteriza por aprovechar la información georreferenciada de una variable y mediante potentes algoritmos de interpolación espacial utiliza puntos con valores conocidos para estimar valores desconocidos en otros puntos.

Existen dos grupos principales de técnicas de interpolación: determinísticas y de estadísticas geográficas (22). Las técnicas de interpolación determinísticas crean superficies a partir de los puntos medidos basándose en la extensión de la similitud (por ejemplo, la ponderación por la distancia inversa) o en el grado de suavizado (por ejemplo, las funciones de base radial). Las técnicas de interpolación de estadísticas geográficas (kriging) utilizan las propiedades estadísticas de los puntos medidos. Las técnicas geoestadísticas cuantifican la autocorrelación espacial entre los puntos medidos y reflejan la configuración espacial de los puntos de muestra en torno a la ubicación de predicción (22).

Por ejemplo, para realizar un mapa de precipitación (lluvia) para el país no se encontrarán suficientes estaciones meteorológicas distribuidas uniformemente para cubrir toda la región. La interpolación espacial puede estimar las temperaturas en lugares que no tienen ese dato utilizando lecturas de temperatura conocida en estaciones meteorológicas cercanas. A este tipo de superficie interpolada con frecuencia se le llama una superficie estadística. Datos de elevación, precipitación, acumulación de nieve, tabla de agua y densidad de población son otros tipos de datos que pueden ser calculados utilizando la interpolación (23). En la **Figura 34**, se muestra un ejemplo del uso de las técnicas de interpolación espacial para la generación de un mapa de temperaturas de Sur África, a partir de los datos de 17 puntos ubicados a lo largo de todo el país.

Figura 34. Mapa de temperaturas interpolado de estaciones meteorológicas Sudafricanas. Fuente: QGIS (https://docs.qgis.org/2.8/es/docs/gentle gis introduction/spatial analysis interpolation.html).

4.5.1 Métodos para generación de la rejilla usada para la implementación de interpolación espacial

Las diferencias entre los métodos empleados para la generación de la rejilla de datos, reside en los algoritmos matemáticos utilizados para calcular los pesos durante la interpolación de los nodos de la cuadrícula. Cada método da como resultado una representación diferente de sus datos, por lo cual puede resultar ventajoso probar cada método con un conjunto de datos típico para determinar de esta forma el método que proporciona la interpretación más satisfactoria de los datos (24). Los métodos más utilizados son:

Distancia inversa a una potencia

Kriging

Curvatura mínima

Método modificado de Shepard

Vecino natural

UNIVERSIDAD DE ANTIOQUIA

Vecino más cercano Regresión polinomial Función de base radial Triangulación con interpolación lineal Media móvil Métricas de datos Polinomio local

Entre los métodos anteriores, se destaca Kriging, el cual es uno de los métodos de generación de rejilla más flexibles y precisos; típicamente es el que se recomienda. Kriging es efectivo porque genera un buen mapa para la mayoría de los conjuntos de datos, también puede compensar los datos agrupados dando menos peso al clúster en la predicción general. Entre las desventajas de Kriging están que en algunos casos es más lento que otros métodos y puede extrapolar los valores de la rejilla más allá del rango de valores de los datos de la variable z (variable a interpolar) (25).

En el presente estudio con el fin de identificar la distribución espacial de los contaminantes PM₁₀ y PM_{2.5} para un periodo anual, se utilizó la información georreferenciada reportada por las diferentes estaciones que componen la red de monitoreo de calidad del aire del Valle de Aburrá en conjunto con el método de interpolación espacial Krigging mediante el uso de la aplicación informática Surfer®. Se seleccionaron estos dos contaminantes dado que disponen de una mejor distribución de estaciones a lo largo del Valle de Aburrá.

4.6 Variables de entrada y fuentes de información

Las variables de entrada para el modelo de dispersión AERMOD, así como las fuentes de información utilizadas para la recolección de los datos requeridos por éste, fueron descritas con suficiente detalle en el numeral 4.3 *"Desarrollo del modelo de dispersión"*. Mientras para la generación de los mapas regionales de contaminación, se utilizaron como variables de entrada las concentraciones anuales de los contaminantes PM₁₀ y PM_{2.5}, valores estimados con la información reportada por las estaciones de calidad del aire del Valle de Aburrá, y que se encuentran disponibles a través de la base de datos en línea SCALAR. En la **Figura 35**, muestra la página donde reside la base de datos, y como ésta se puede emplear para acceder a la información mencionada anteriormente.

Figura 35. Base de datos de SCALAR de contaminantes almacenada en plataformaMODEAM.Fuente:plataformaMODEAM(modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id=116:graficas-de-
concentracion&catid=93&Itemid=532).

4.7 Escenarios analíticos o de aplicación del modelo de dispersión

Durante la ejecución del modelo se probaron tres escenarios diferentes, los cuales se diferencian en la forma en que se ingresan las fuentes de emisión, a continuación, se describen de forma breve en qué consisten:

UNIVERSIDAD DE ANTIOQUIA

Primer escenario: el modelo se corrió ingresando las fuentes móviles y fijas como fuentes de área con una dimensión de 1 km².

Segundo escenario: se empleó la base de datos del Área Metropolitana de las diferentes fuentes fijas ubicadas dentro de su Jurisdicción, y las fuentes móviles se ingresaron como en el escenario 1.

Tercer escenario: se discretizaron las emisiones de fuentes móviles dadas como fuentes de área de las celdas 1700, 1760, y 2296 en emisiones lineales para las diferentes vías al interior de estas celdas que poseen información de aforos.

5 RESULTADOS

5.1 Modelo de dispersión

El modelo de dispersión se corrió bajo los tres escenarios propuestos. A continuación, se presentan los resultados obtenidos para cada uno de éstos.

5.1.1 Resultados del modelo AERMOD para el escenario 1

Todas las fuentes se ingresaron como fuentes de área. En la **Figura 36**, **Figura 37**, **Figura 38** y **Figura 39**, se muestran las predicciones realizadas para los contaminantes PM₁₀, PM_{2.5}, SO₂ y NO_x respectivamente por parte del modelo de dispersión AERMOD para un periodo de 24 horas.

5.1.2 Resultados para el contaminante PM10

Figura 36. Concentraciones máximas de material particulado PM₁₀ en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá.

Para un periodo de 24 horas el modelo predice las máximas concentraciones para el área comprendida por la celda 935 (ubicada en Jurisdicción del municipio de Girardota) y sus alrededores; lo anterior debido a que para dicha celda se registra un valor de emisión anual de 495.44 Mg/año, el cual es 6 veces superior al valor que le antecede (82.47 Mg/año). Las otras zonas que presentan concentraciones altas se ubican hacia el sur del Valle de Aburrá, coincidiendo con la presencia de celdas donde las emisiones provenientes de las fuentes fijas son superiores en relación a los alrededores (celdas 1999 y 2297 con 82.47 y 52.45 Mg /año respectivamente).

5.1.3 Resultados para el contaminante PM2.5

Figura 37. Concentraciones máximas de material particulado PM_{2.5} en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá.

Para el caso del material particulado PM_{2.5}, las máximas concentraciones registradas por el modelo se ubican hacia la zona centro de Medellín, coincidiendo con las celdas de mayor emisión provenientes de las fuentes móviles. Si se comparan los niveles de emisión máximos de PM₁₀ con los de PM_{2.5} para el periodo de 24 horas, se encuentra que los valores máximos de PM_{2.5} son superiores a los de PM₁₀, lo cual se debe a las emisiones reportadas para el contaminante PM₁₀, las cuales para el año 2015 son inferiores a las de PM_{2.5} para fuentes móviles, presentando valores de 240 Mg/año y PM_{2.5} 1508 Mg/año respectivamente; lo cual no tiene sentido, debido a que el PM_{2.5} es una fracción del PM₁₀. Por otro lado, para las emisiones de fuentes fijas, la misma base de datos del MODEAM para el periodo 2016 reporta valores de 1151.04 Mg/año y 332.61 Mg/año para PM₁₀ y PM_{2.5} respectivamente (21), valores que son coherentes con lo esperado para la distribución de partículas generadas por las emisiones de contaminantes dentro de los diferentes procesos que se dan a cabo en el Valle de Aburrá.

5.1.4 Resultados para el contaminante SO₂

Figura 38. Concentraciones máximas de SO₂ en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá.

Las concentraciones predichas por el modelo para el dióxido de azufre reflejan la influencia de las emisiones de las fuentes fijas, donde se alcanzan concentraciones máximas de 696.10 928.58 µg/m³ para las zonas ubicadas en Bello y Envigado respectivamente. En la **Figura 38** se muestran las dos zonas de alta concentración, ubicadas una en la parte norte del municipio de Bello, y otra en inmediaciones entre los municipios de Envigado e Itagüí, coincidiendo ambas con la ubicación de fuentes fijas donde se generan altos niveles de emisiones (celdas 1161 y 2297 con 731.27 y 741.9 Mg/año respectivamente).

5.1.5 Resultados para el contaminante NOx

Figura 39. Concentraciones máximas de NO_x en 1864 receptores seleccionados, para un periodo de 24h, Valle de Aburrá.

El comportamiento del contaminante NO_X a lo largo del Valle de Aburrá es similar al PM_{2.5}, indicando que las emisiones de este provienen prioritariamente de las fuentes móviles, por lo cual las zonas de mayor concentración se presentan en el centro de Medellín donde existe un alto flujo vehicular, alcanzándose concentraciones hasta de 3430 μ g/m³ en el receptor ubicado en las coordenadas (437698.52, 691416.63).

5.1.6 Resultados del modelo AERMOD para el escenario 2

Para el segundo escenario las fuentes fijas se ingresaron como fuentes puntuales y las fuentes móviles como de área. En la **Figura 40**, **Figura 42**, **Figura 43** y **Figura 44**, se muestran las predicciones realizadas para los contaminantes PM₁₀, PM_{2.5}, SO₂ y NO_x respectivamente por parte del modelo de dispersión AERMOD para un periodo de 24 horas.

5.1.7 Resultados para el contaminante PM10

Figura 40. Concentraciones máximas de material particulado PM₁₀ en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá.

Las zonas de mayor concentración mostradas en la Figura 40, discrepan de las mostradas en la Figura 36, lo cual se debe a las diferencias entre la fuentes de información de emisiones utilizadas para el análisis, de tal forma que si las fuentes se ingresan como emisiones de área como se muestra en la Figura 4136, la zona de mayor emisión corresponde a la celda roja ubicada en Jurisdicción del municipio de Girardota; mientras que cuando las fuentes fijas se ingresan como fuentes puntuales, la mayor cantidad de éstas, se encuentra en la zona comprendida entre Medellín (al sur) e Itagüí (al norte), y es en dicha zona donde el modelo para el escenario 2 donde se predicen las máximas concentraciones. Otra diferencia entre los resultados de ambos escenarios se da en los niveles máximos mostrados en ambas escalas, la primera muestra 147 g/m³ mientras la segunda 83.5 g/m³, lo que indica una reducción en los valores máximos predichos por el modelo del orden del 43.2% con relación al valor del escenario 1.

Figura 41. Ubicación-de fuentes fijas para emisiones PM₁₀ en el Valle de Aburrá.

Fuentes: MODEAM/Mapa Google Earth.

5.1.8 Resultados para el contaminante PM2.5

Figura 42. Concentraciones máximas de material particulado PM_{2.5} en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá.

Si se comparan los resultados entregados por el modelo para el escenario 2 con los del 1, estos son similares, con la excepción que se genera un leve incremento en las concentraciones predichas, lo cual puede deberse a las diferencias entre los datos reportados por las distintas fuentes de información. En la **Figura 42**, se observa como la zona de máxima concentración se ubica en la zona centro de Medellín, indicando que las variaciones en los aportes en las fuentes fijas son insuficientes para generar una variación en la ubicación de las zonas de mayor contaminación, debido a que las emisiones de éstas representan solo el 20% del total de emisiones.

5.1.9 Resultados para el contaminante SO₂

Figura 43. Concentraciones máximas de SO₂ en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá.

Para el contaminante SO₂, no se cuenta con inventario de emisiones para las fuentes móviles, por lo cual al cambiar el tipo de fuente de área a puntual las predicciones del modelo deberían reflejar una mejor aproximación con la realidad. Cuando se comparan los resultados mostrados en la **Figura 38** con respecto a la **Figura 43**, las diferencias radican principalmente en los niveles donde las escalas pasan de mostrar un valor máximo de 501 μ g/m³ a 293 μ g/m³; la diferencia más notoria se presenta en la parte norte de Bello donde había una zona marcada de alta contaminación y en el nuevo escenario ésta se hace más pequeña y de menor nivel de concentración.

5.1.10 Resultados para el contaminante NOx

Figura 44. Concentraciones máximas de NO_x en 1864 receptores seleccionados, para un periodo de 24h, escenario dos. Valle de Aburrá.

La diferencia principal con respecto al escenario uno, radica en que los niveles máximos registrados pasan de 2480 a 3170 µg/m³, lo cual puede deberse a dos circunstancias, la primera es que al discretizar las fuentes fijas las emisiones quedan más restringidas en el espacio, por lo cual si un receptor se ubica cerca de una de éstas, se verá expuesto a concentraciones más altas como lo predice el modelo; el segundo caso puede deberse a discrepancias entre las fuentes de los inventarios de emisiones como se mencionó anteriormente. Las concentraciones más altas se reportan para los receptores ubicados en la zona del centro de Medellín.

5.1.11 Resultados del modelo AERMOD para el escenario 3

El tercer escenario se dio cuando se discretizó la información de las fuentes móviles para las celdas 1700, 1760 y 2296, donde se pasa de fuentes de área a fuentes lineales. El modelo se ejecuta para los periodos de 24 horas, un mes y un año, y sólo se ubican receptores al interior de estas celdas, lo

anterior con el fin de observar cómo es el comportamiento y predicciones del modelo en una escala de visualización más pequeña, aunque el modelo para estimar las concentraciones se ejecuta con todo el inventario de emisiones disponible del Valle de Aburrá. Se eligieron 19 receptores, debido a que éstos son suficientes para observar las diferentes zonas de concentración que predice el modelo al interior de las celdas seleccionadas, cabe destacar que tres de los receptores seleccionados coinciden con la ubicación de estaciones de mediciones de calidad del aire (MED-UNNV, MED-MANT e ITA-CSRV).

5.1.12 Resultados para el contaminante PM10

Figura 45. Concentraciones máximas de material particulado PM₁₀ en 19 receptores seleccionados, para un periodo de 24h, escenario tres.

Las concentraciones máximas predichas por el modelo decaen rapidamente cuando se pasa del periodo de 24 horas a un año como se puede observar en la **Figura 45**, **Figura 46** y **Figura 47**; lo anterior se debe a que el modelo de dispersión AERMOD para periodos cortos tiende a sobreestimar los niveles, pero a medida que el periodo de tiempo se hace mas extenso los niveles promedios estimados son mas cercanos a los valores reales, lo cual se puede apreciar en la Tabla 2; donde al compararse los resultados para los periodos anual y mensual contra el máximo diario, se encuentra que las predicciones del modelo son mas cercanas a los valores medidos para los primeros.

La concentración máxima se estima para la ubicación del receptor identificado como D12, el cual se encuentra localizado a una menor distancia de la fuente de emisión lineal (vía) como se muestra en la Figura 48, si se compara con las distancias de otros receptores a las fuentes lineales en dicha Figura. Las concentraciones en este receptor se ven fuertemente influenciadas con respecto a las de otros por la presencia de dos fuentes fijas identificadas como FF-839 y FF-786, las cuales se ubican dentro de un radio de 250 m con respecto a éste, caso que no acontece con los demás receptores. Lo anterior, evidencia la influencia que tienen en las predicciones del modelo la distancia entre fuentes y receptores.

Figura 46. Concentraciones máximas de material particulado PM_a en 19 receptores seleccionados, para un periodo de un mes, escenario tres.

Figura 47. Concentraciones máximas de material particulado PM₁₀ en 19 receptores seleccionados, para un periodo de un año, escenario tres.

Figura 48. Influencia de la cercania de las fuentes en los receptores para el contaminate PM₁₀.

5.1.13 Resultados para el contaminante PM2.5

El comportamiento predicho por el modelo AERMOD para el contaminante PM_{2.5} es similar al mostrado para PM₁₀, en los tres periodos de tiempo evaluados, a excepción en el nivel de los valores; esto se debe a la diferencia reportada entre las estimaciones de las emisiones de PM₁₀ para las fuentes móviles, las cuales resultan ser inferiores a las estimadas para PM_{2.5}. Las concentraciones máximas se presentan en la ubicación del receptor D12 con valores de 506.90, 192.40 y 119.58 g/m³ para los periodos diario, mensual y anual respectivamente, los cuales son superiores con los registrados en la misma ubicación para PM₁₀ que fueron de 86.96, 37.00 y 23.56 g/m³ en los periodos mencionados. Lo descrito anteriormente, se muestra en la Figura 49, Figura 50 y Figura 51.

Figura 49. Concentraciones máximas de material particulado PM_{2.5} en 19 receptores seleccionados, para un periodo de 24h, escenario tres.

Figura 50. Concentraciones máximas de material particulado PM_{2.5} en 19 receptores seleccionados, para un periodo de un mes, escenario tres.

Figura 51. Concentraciones máximas de material particulado PM_{2.5} en 19 receptores seleccionados, para un periodo de un año, escenario tres.

5.1.14 Resultados para el contaminante SO₂

Las concentraciones máximas predichas por el modelo AERMOD para los tres periodos de tiempo evaluados (diario, mensual y anual) en las celdas seleccionadas, se encuentran en la celda 2296 como se puede ver en la **Figura 52**, **Figura 53** y **Figura 54**, lo anterior se presenta debido a que en esta zona, se encuentra la mayor presencia de fuentes fijas que generan emisiones del contaminante SO₂. En la **Figura 55**, se evidencia la distribución de las fuentes fijas al interior de las mismas, se destaca como dentro de la zona de delimitación y alrededor de la celda 2296 aparece un número mayor de fuentes fijas, con relación a las celdas 1700 y 1760. La concentración máxima para el periodo de 24 horas es de 181.74 μ g/m³, y se presenta en la ubicación del receptor identificado como D16, la cual se encuentra a una menor distancia de las fuentes 7 y 8 en relación con los demás receptores, para los cuales el modelo predice las exposiciones más altas dentro de la celda 2296 (D13 y D15 con valores de 142.27 y 131.47 μ g/m³ respectivamente).

Figura 52. Concentraciones máximas de material particulado SO₂ en 19 receptores seleccionados, para un periodo de 24h, escenario tres.

Figura 53. Concentraciones máximas de material particulado SO₂ en 19 receptores seleccionados, para un periodo de un mes, escenario tres.

Figura 54. Concentraciones máximas de material particulado SO, en 19 receptores seleccionados, para un periodo de un año, escenario tres.

Figura 55. Influencia de la cercania de las fuentes fijas con respecto a los receptores para el contaminate SO₂.

5.1.15 Resultados para el contaminante NOx

Las concentraciones predichas por el modelo AERMOD para el contaminante NO_x (dadas como NO₂) en los tres periodos evaluados, se muestran en la **Figura 56**, **Figura 57** y **Figura 58**, donde se evidencia un comportamiento similar al de las concentraciones estimadas para los contaminantes PM₁₀ y PM_{2.5}, en cuanto a la distribución espacial de las concentraciones máximas, las cuales se ubican alrededor del receptor identificado como D12. Los niveles predichos por el modelo se incrementan para el escenario 3 con respecto a los anteriores, porque al discretizar las emisiones se concentran en una región más pequeña en el espacio, y si existe un receptor cerca a éstas, debido al comportamiento de dispersión de los contaminantes, se espera que las concentraciones sean superiores, las cuales para el periodo de 24 h fue de 5033 µg/m³ en la ubicación del receptor D12, valor inferior a los 3170 µg/m³ estimados en el escenario 2 para los receptores ubicados en la misma zona.

Figura 56. Concentraciones máximas de material particulado NO_x en 19 receptores seleccionados, para un periodo de 24h, escenario tres.

Figura 57. Concentraciones máximas de material particulado NO_x en 19 receptores seleccionados, para un periodo de un mes, escenario tres.

Figura 58. Concentraciones máximas de material particulado NO_x en 19 receptores seleccionados, para un periodo de un año, escenario tres.

En la Tabla 2, se muestran los resultados de las concentraciones máximas para los periodos de tiempo de 24 h, un mes y un año, predichos por el modelo para las ubicaciones de las estaciones MED-MANT, MED-UNNV e ITA-CRSV, así como los valores registrados por dichas estaciones de calidad del aire para los contaminantes que son monitoreados por éstas durante el periodo 2015-2016.

Estación	Contamina nte	Monitorea do	Coordenadas UTM ZONA 18 X Y		Period o	modelo AERMOD (g/m3)	Red SCALAR(g/m3)	Difere ncia (%)	Factor de predicci ón
MED- UNNV	- PM ₁₀ NO 43618 69234 V 5.00 7.00		69234 7.00	DIARI O	50.73				
			-		MENS UAL	16.73			
					ANUA L	11.26			
	PM _{2.5}	SI			DIARI O	233.12	103.3	125.7	2.26
					MENS UAL	65.10	67.8	4.0	1.04
					ANUA L	40.17	32.1	25.1	1.25

Tabla 2. Concentraciones máximas de contaminantes para periodos de 24 h, un mes y un año, reportadas porestaciones de la Red de Monitoreo y modeladas por AERMOD.

Estación	Contamina nte	Monitorea do	Coorder UTM ZC X	nadas DNA 18 Y	Period o	modelo AERMOD (g/m3)	Red SCALAR(g/m3)	Difere ncia (%)	Factor de predicci ón
	NO _x	SI			DIARI O	2625.50	276.2	850.6	9.51
					MENS UAL	644.94	160.2	302.6	4.03
					ANUA L	393.42	137.3	186.5	2.87
	SO ₂	NO	_		DIARI O	41.49			
					MENS UAL	20.41			
					ANUA L	14.47			
MED- MANT	PM ₁₀	SI	43699 3.50	691157 .45	DIARI O	59.86	148.0	59.6	2.47
					MENS UAL	20.46	102.2	80.0	5.00
					ANUA L	14.19	63.8	77.8	4.50
	PM _{2.5}	SI			DIARI O	317.8	113.0	181.2	2.81
					MENS UAL	90.68	74.2	22.2	1.22
					ANUA L	62.11	39.7	56.4	1.56
	NO _x	SI	_		DIARI O	3384.54	207.6	1530.3	16.30
					MENS UAL	906.67	156.8	478.2	5.78
					ANUA L	635.48	110.5	475.1	5.75
	SO ₂	SI	_		DIARI O	38.50	9.0	327.8	4.28
					MENS UAL	16.38	5.1	221.2	3.21
					ANUA L	10.91	4.1	166.1	2.66
ITA- CRSV	PM ₁₀	SI	43285 6.00	682210 .00	DIARI O	35.33	144.0	75.5	4.08
					MENS UAL	20.02	89.9	77.7	4.49
			_		ANUA L	18.66	53.5	65.1	2.87
	PM _{2.5}	NO			DIARI O	52.85			
					MENS	16.82			

UNIVERSIDAD DE ANTIOQUIA Presente Alarde Gener

١

Estación	Contamina nte	Monitorea do	Coorde UTM Z X	enadas ONA 18 Y	Period o	modelo AERMOD (g/m3)	Red SCALAR(g/m3)	Difere ncia (%)	Factor de predicci ón
					UAL			-	
					ANUA L	15.12			
	NO _x	NO	_		DIARI O	519.17			
					MENS UAL	138.60			
					ANUA L	121.80			
	SO ₂	NO	_		DIARI O	142.27			
					MENS UAL	63.16			
					ANUA	55.16			

De los valores tabulados en la Tabla 2 se puede decir:

Las concentraciones de PM₁₀ predichas por el modelo en la ubicación de las tres estaciones seleccionadas, inferiores a las registradas por el sistema de Vigilancia de Calidad del Aire, lo anterior se debe a que el inventario de fuentes móviles para este contaminante debe ser revisado; posiblemente con el ajuste respectivo, las predicciones del modelo para los periodos de un mes y un año, estarán más cercanos a los medidos.

L

Para el material PM_{2.5} las concentraciones máximas predichas por el modelo para periodos de un mes y un año, presentan un factor inferior a 2, demostrando el buen desempeño de éste para periodos largos, por el contrario, cuando el periodo evaluado es de 24 h, las predicciones se hacen más imprecisas encontrándose diferencias superiores al 100% (factores > 2).

Para el contaminante SO₂, se encuentra que éste solo es medido en la estación MED-MANT, pero las predicciones del modelo son muy superiores a las medidas, lo cual puede deberse a que el modelo de dispersión AERMOD no tiene en cuenta las reacciones que se dan en la atmósfera, que llevan a la transformación del azufre en el aire en partículas (sulfatos)(26).

Para el contaminante NO_x las diferencias se encuentran en un factor que oscila entre 3 y 10, indicando que las predicciones del modelo no son buenas, probablemente debido a que éste no tiene en cuenta las reacciones que ocurren en la atmósfera entre las especies de NO_x con otras sustancias y su transformación para generar material particulado en forma de nitratos.

5.2 Mapas regionales

Con el fin de identificar las zonas que presentan los mayores niveles de concentración para los contaminantes PM₁₀ y PM_{2.5}, se dispuso de la generación de mapas regionales (que cubren gran parte del Valle de Aburrá), los cuales se construyeron a partir de los promedios anuales de los datos reportados por cada una de las estaciones que monitorearon durante los años 2012 a 2016 los contaminantes mencionados. Se tomaron datos de este periodo, con el fin de identificar las posibles variaciones en el tiempo entre los diferentes mapas, debido a que para los años entre 2008 a 2011 no se contaba con suficientes datos para construir una adecuada interpolación espacial (pocas estaciones) para el contaminante PM_{2.5}, como se puede ver en la Tabla 3. En las Tablas 3 y 4 se muestran los promedios anuales para PM₁₀ y PM_{2.5}, así como la identificación de las estaciones donde se registraron, acompañadas de su georreferenciación en coordenadas UTM 18 N.

Al observar la Tabla 3 en relación a la Tabla 4, se encuentra una mayor proporción de años sin información disponible reportadas por las 17 estaciones que en algún año entre 2008 y 2016 monitorearon el contaminante PM_{2.5}, encontrándose un porcentaje de valores no disponible superior a la mitad (56.2%); mientras el PM₁₀ que fue registrado por 23 estaciones, presenta un porcentaje de falta de información de promedios anuales inferior (29.5%). Por otro lado, si se compara la información reportada para el periodo 2012-2016 el porcentaje de datos no reportados es inferior siendo del 40.0 % y 28.7% para PM_{2.5} y PM₁₀ respectivamente, razón por la cual dicho periodo es más adecuado para la representación espacial. El contaminante PM₁₀, posee más estaciones que lo reportan y una menor proporción de datos no reportados, por lo cual los mapas regionales generados para éste, poseen una mejor representación de la distribución espacial del contaminante a lo largo del Valle de Aburrá, dicho contraste se puede ver al comparar las Figuras 59 a 63 que representan la distribución para PM₁₀, contra las Figuras 64 a 68 donde se muestran los resultados de la interpolación espacial para el contaminante PM_{2.5}.

Tabla 3. Concentraciones anuales de PM2.5 registradas por estaciones de la red de Calidad del Aire del Valle deAburrá. Fuente: plataforma MODEAM

ESTACIÓN	TIPO DE ESTACIÓN	UTM	18 N				Cor	ncentración (µg	/m³)			
LOTADION		X	Y	2008	2009	2010	2011	2012	2013	2014	2015	2016
BEL-SESB	Urbana de Fondo	438308.05	699878.33									16.95
CAL-LASA	Suburbana de Fondo	429335.05	674199.06					20.45	24.33	25.21	29.58	33.37
GIR-INDER	Suburbana de Fondo	450108.59	704421.52						14.99			
GIR-SOSN	Suburbana de Fondo	450123.08	705055.83								20.62	24.40
ITA-CJUS	Urbana Industrial	433929.08	683765.77					25.40	27.50	31.76	28.08	29.34
ITA-CONC	Suburbana de Fondo	428710.21	681873.73					24.55	25.53	25.04	24.20	25.66
ITA-DITA	Urbana de Fondo	430533.27	681976.13		29.49	28.56	23.18	28.09				
MED-AGUI	Urbana de Tendencia Mesoescala	437082.51	691221.58	35.00	29.24	24.05	28.66	25.68				
MED-LAYE	Suburbana de Fondo	439081.08	683414.75								21.05	26.88
MED-POBL	Suburbana de Fondo	438413.23	683794.41					26.09	23.51	25.47	28.80	
MED- UNNV	Urbana de Fondo	436173.00	692353.00					27.48	28.13	29.95	31.97	32.98
MED-JABO	Urbana de Fondo	437588.92	693364.24				23.20	24.39				
MED-MANT	Urbana de Trafico	436993.50	691157.45					36.77	34.92	37.35	39.48	39.02
MED-PJIC	Urbana de Trafico	436082.67	686340.06	29.72	24.50	26.16	20.21	22.54	20.46	24.91	21.95	33.78
MED-UCES	Suburbana de Fondo	438762.08	686245.12	22.18	24.93	26.56						
MED-UNFM	Urbana de Trafico	434452.40	693530.65				25.95	17.16	21.38	28.56	26.37	35.04
MOV-EST-METR	Urbana de Trafico	430574.52	680082.37							41.92	50.90	50.24

(http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id=116&Itemid=532).

NOTA: Las celdas en verde identifican los periodos para los cuales no se tiene reporte de datos del contaminante por parte de la estación.

Tabla 4. Concentraciones anuales de PM10 registradas por estaciones de la red de Calidad del Aire del Valle deAburrá. Fuente: plataforma MODEAM

ESTACIÓN	TIPO DE ESTACIÓN	UTM 18 N		Concentración (µg/m³)								
		Х	Y	2008	2009	2010	2011	2012	2013	2014	2015	2016
BAR-HSVP	Suburbana de Fondo	463169.62	711433.49	35.25	39.46	35.79	34.60	32.27	30.69	32.53	29.75	42.16
BEL-SEPM	Urbana de Trafico	440518.98	700674.16	65.72	64.64	54.02		54.02		54.02		54.02
BEL-USBV	Suburbana de Fondo	437107.58	699787.26					34.06	36.72	42.79	45.27	46.02
CAL-PMER	Urbana de Trafico	429794.02	673386.29	58.90	61.46	50.67	41.58	45.17	44.53	48.62	45.19	59.11
COP-HSMA	Suburbana de Fondo	444176.39	701898.82	43.04	43.38	40.70	37.27	37.40	36.06	35.82	30.99	44.07
EST-CAM	Urbana de Fondo	429034.27	680695.83	50.23	52.91	43.65	37.64	37.94	36.63			
EST-MAGO	Urbana Industrial	429648.21	680050.22							48.26	48.21	51.22
GIR-IECO	Urbana de Fondo	450139.53	705056.23	41.63	43.92	46.43	37.50	40.66	42.66	45.59	50.30	48.28
ITA-CONC	Suburbana de Fondo	428728.32	681863.13					40.37	47.48	50.68	50.23	49.46
ITA-CRSV	Urbana Industrial	432877.92	682196.05	61.49	61.59	57.90	54.64	59.97	60.06	57.01	53.49	51.67
ITA-DITA	Urbana de Fondo	430541.79	681953.09	48.21	50.41	48.25	48.49	50.81				
ITA-PTAR	Urbana de Tendencia Mesoescala	434970.25	684343.29	63.76	57.26	47.52	37.04	36.11	35.21	42.90	42.20	54.33
MED-AGUI	Urbana de Tendencia Mesoescala	437098.26	691219.63	65.15	59.69	45.47	45.62	45.90				
MED-CORA	Urbana de Tendencia Mesoescala	435561.33	690822.11		53.81	52.23	45.20	40.49	37.76	39.42	40.38	47.09
MED-EXSA	Urbana de Tendencia Mesoescala	436944.14	690789.88	60.95	55.27	61.87	56.42	53.33	57.87	62.80	66.77	58.62
MED-MANT	Urbana de Trafico	437006.00	691158.32								63.76	66.77
MED-VIHE	Suburbana de Fondo	438573.28	691218.06								27.44	40.89
MED-PJIC	Urbana de Trafico	436109.56	686338.08	66.70	56.35	56.40	50.81	48.28	46.27	46.07	40.89	54.68
MED-UDEA	Urbana de Fondo	436977.40	693123.68	57.92	51.38	48.96						
MED-UDEM	Suburbana de Trafico	432547.29	688675.92	56.00	47.28	46.59						
MED-UNFM	Urbana de Trafico	434458.09	693525.68	81.00	68.98	66.32	58.63	71.88	40.29	44.52	39.67	51.22
MED-MIRA	Suburbana de Fondo	439246.65	688637.86						33.05	35.58	33.95	
SAB-CAM	Urbana de Tendencia Mesoescala	431830.29	679894.12	51.66	53.21	49.08	48.16	44.82	39.74	43.42	42.08	56.38

(http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id=116&Itemid=532).

5.2.1 Mapas regionales para PM₁₀

Figura 59. Distribución espacial de las concentraciones de PM₁₀ para el año 2012

Al observar la Figura 59, se encuentran dos zonas de alta concentración una alrededor de la estación de tráfico MED-UNNV (71.88 µg/m³) y la otra alrededor de la estación industrial ITA-CRSV

 $(59.97 \ \mu g/m^3)$, lo que evidencia la afectación de la cercanía de las fuentes con respecto a los receptores en este caso representados por la ubicación de las estaciones de medición. Por otro lado, para las restantes 15 estaciones se encuentra una mayor homogeneidad en los datos los cuales se encuentran en el rango entre 32 y 54 µg/m³, que al ser representadas mediante la interpolación espacial generan zonas extensas con concentraciones similares. El trabajar con todos los tipos de estaciones tiene su costo, lo cual puede implicar que el método de interpolación espacial muestre zonas de alta contaminación cuando éstas no lo son, como es el caso de Robledo que se ve fuertemente influenciado por los valores reportados para la estación MED-UNFM; el caso contrario podría ser omitir dichas estaciones, pero esto generaría mapas con muy pocos puntos de referencia, obligando al algoritmo de interpolación, a realizar un mayor número de predicciones que en algunos casos pueden resultar erróneas. Por ejemplo si se retiran estaciones de tráfico, industriales y mesoescala, la predicción que el método de interpolación haría para la zona centro de Medellín mostraría que los niveles en dicho lugar serían semejantes a los reportados para las estaciones circundantes como son MED-VIHE, ITA-CONC y COP-HSMA lo que no sería representativo; debido a que se asumiría que la exposición es independiente de la ubicación del receptor con respecto a la fuente, lo cual contradice los resultados de la literatura y reportados por el modelo de dispersión AERMOD.

Figura 60. Distribución espacial de las concentraciones de PM₁₀ para el año 2013.

La distribución espacial mostrada en la Figura 60, muestra dos zonas de alta concentración, el primer alrededor de la estación mesoescala MED-EXSA (57.87 μ g/m³) y la segunda alrededor de la estación industrial ITA-CRSV (60.06 μ g/m³); mientras para las demás estaciones los niveles registrados decrecen hasta el valor que se presenta en la estación BAR-HSVP (30.69 μ g/m³) clasificada como urbana de fondo. El efecto de la estación MED-UNFM que se muestra en la Figura 59, no se observa en la Figura 60, lo cual se debe a que las concentraciones descendieron de 71.88 a 40.29 μ g/m³, debido a que durante el año 2012 se realizaron obras en la vía aledaña (carrera 80) a la ubicación del equipo de muestreo.

En la Figura 61, se observa como al desaparecer la influencia de la estación MED-UNFM, las zonas de máximas concentraciones predichas por la interpolación espacial se asemejan un poco más a lo esperado, donde aparece la presencia de zonas de alta concentración tales como en el centro de la ciudad de Medellín (potencializada por las emisiones de las fuentes móviles) representada por la zona alrededor de la estación MED-MANT, la zona alrededor de la estación ITA-CRSV, la cual se encuentra fuertemente influenciada por las emisiones de fuentes fijas y finalmente la zona que se presenta al norte a la altura del municipio de Bello propiciada por las mediciones de la estación de tráfico BEL-SEPM. Para las restantes zonas del Valle de Aburrá el comportamiento decae hacia los extremos del Valle, con excepción de la estación CAL-PMER que también está influenciada por los vientos que van en dirección norte sur.

Figura 62. Distribución espacial de las concentraciones de PM₁₀ para el año 2015

En la Figura 62 se muestra una extensa zona de concentraciones similares a lo largo de todo el Valle de Aburrá, la cual va desde la ubicación de la estación GIR-IECO en Girardota hasta la estación CAL-PMER en Caldas, lo anterior se debe a que durante el año 2015 se presentó un evento agudo de contaminación durante el periodo de marzo a abril, durante el cual todas las estaciones independientes de su clasificación registraron valores similares.

Figura 63. Distribución espacial de las concentraciones de PM₁₀ para el año 2016.

La **Figura 63**, muestra una representación espacial cercana a la realidad del año 2016, debido a los eventos de alta estabilidad atmosférica presentados durante el periodo de marzo-abril del año 2016, lo cual generó una gran homogenización de los contaminantes durante este periodo, lo anterior termina reflejándose como una gran zona con concentraciones anuales promedio similares, que se observa en la Figura 63 como la gran zona naranja, comprendida entre el centro de Medellín (estación MED-MANT) hasta inmediaciones del municipio de Caldas (estación CAL-PMER). Mientras para la parte norte del Valle de Aburrá, los niveles fueron en general inferiores a 50 µg/m³, con excepción de la zona alrededor de la estación de tráfico BEL-SEPM que fue de 54 µg/m³.

UNIVERSIDAD DE ANTIOQUIA

5.2.2 Mapas regionales para PM2.5

Figura 64. Distribución espacial de las concentraciones de PM_{2.5} para el año 2012.

Las zonas de mayor concentración que aparecen en la Figura 64, coinciden con las zonas de mayor emisión para las fuentes móviles y fijas, como se explicó anteriormente, presentando un comportamiento similar al encontrado para las concentraciones de PM₁₀ mostradas en la Figura 60.

Figura 65. Distribución espacial de las concentraciones de PM_{2.5} para el año 2013

La información que provee la Figura 65, muestra un acercamiento a la predicción del Modelo AERMOD que se muestra en la Figura 37, donde se observa como las concentraciones máximas se presentan hacia el centro de Medellín y hacia la zona sur principalmente en la jurisdicción del municipio de Itagüí, la primera zona correspondiente a la influencia de las fuentes móviles mientras la segunda coincide con la ubicación de la zona industrial donde se generan altas emisiones provenientes de las fuentes fijas.

En la Figura 66, se hace evidente el sesgo que puede generar la inclusión de valores extremos en las predicciones generadas por el algoritmo de interpolación, claramente se observa una amplia zona de alta concentración alrededor de la estación EST-METR predicha por el mismo, lo anterior se debe a que ésta estación se encuentra influenciada por el tráfico vehicular adyacente a su posición. Caso similar ocurre con la zona influenciada por los valores reportados para la estación MED-MANT, cabe resaltar que la extensión de la zona es inferior, aunque es de esperarse que para el centro de Medellín se presenten concentraciones mayores, debido a la fuerte influencia que tienen las altas emisiones registradas en esta zona para el material particulado PM_{2.5} proveniente de fuentes móviles.

Figura 67. Distribución espacial de las concentraciones de PM_{2.5} para el año 2015

Al comparar la distribución espacial mostrada en la Figura 67 con la Figura 66, la representación evidencia una tendencia creciente en las concentraciones a medida que se realiza un desplazamiento hacia el sur. Lo anterior, coincide parcialmente con lo esperado; sin embargo, la medición reportada por la estación MED-MANT que representa la concentración del centro de Medellín, no está acorde con lo predicho por el modelo de dispersión AERMOD, donde se espera que, en el centro de la ciudad, se presenten las concentraciones máximas producto de las altas emisiones provenientes de las fuentes móviles en la zona. Para la zona sur del Valle se presenta una amplia zona de altas concentraciones generada por la influencia que tienen las concentraciones reportadas por la estación EST-METR (50.90 μ g/m³), valor muy superior a los restantes valores reportados por las estaciones vecinas que son de 28.08 y 24.04 para ITA-CJUS e ITA-CONC respectivamente.

La representación mostrada en la Figura 68 es similar a la Figura 66, con la excepción que la inclusión de la estación GIR-SOSN, genera un mapa de distribución de la concentración de mayor extensión, en la cual se ve claramente como las concentraciones máximas se ubican de norte a sur teniendo como eje el centro de Medellín y en dirección contraria se presentan los menores valores de concentración, las cuales son inferiores a 24.4 g/m³.

6 CONCLUSIONES

El modelo de dispersión AERMOD, permitió caracterizar el comportamiento de los contaminantes PM₁₀, PM_{2.5}, NOX y SO₂, el cual requirió para su implementación la construcción de una capa meteorológica mediante el uso del preprocesador AERMET; ésta incluyó el uso de las variables meteorológicas como temperatura, humedad, pluviosidad, radiación solar y, presión atmosférica registradas por la estación MED-UNNV, así como los datos del gradiente vertical de temperatura registrados por el radiómetro operado por el SIATA. Adicionalmente, se elaboraron los respectivos archivos con el inventario de fuentes de emisiones móviles y fijas, y se dispusieron receptores a lo largo de todo el Valle de Aburrá, lo cual permitió una vez ejecutado el preprocesador AERMAP y paso seguido la etapa final del modelo AERMOD la generación de predicciones de las concentraciones máximas para periodos de 24 h, un (1) mes y un (1) año. Identificándose las siguientes conclusiones como las de mayor relevancia:

El nivel de confianza en las predicciones del modelo de dispersión AERMOD, depende principalmente de un buen inventario de emisiones y en segundo lugar del periodo de tiempo para el cual el modelo se ejecuta, lo anterior se corrobora con las predicciones acertadas que realiza el modelo para el contaminante PM_{2.5} para periodos de un (1) mes y un (1) año; mientras para el contaminante PM₁₀ que posee problemas en su inventario de emisiones, los resultados no están cerca de los medidos, y para el caso de periodos cortos de tiempo (24 h), para ninguno de los dos contaminantes anteriores el modelo da buenos resultados.

Para los contaminantes SO₂ y NO_x, que experimentan reacciones en la atmósfera, el modelo AERMOD no genera resultados muy confiables o cercanos a los valores medidos, tanto para periodos cortos como largos. Aunque en mayor medida, las discrepancias pueden ser atribuidas a las transformaciones en la atmosfera, dado que éstas tienden a reducir los niveles que son registrados por los equipos de medición, otra probable explicación pueda deberse a la calidad de los valores reportados por los inventarios de emisiones.

Los mapas regionales elaborados para los contaminantes PM₁₀ y PM_{2.5}, muestran cierto grado de semejanza con respecto a los niveles de contaminación esperados para algunas zonas dentro del Valle de Aburrá, encontrándose que bajo determinadas condiciones la distribución espacial predicha por el algoritmo de interpolación realiza una buena representación de la realidad. Pero la ausencia de información reportada por estaciones de un mismo tipo, hace que en algunos mapas la interpolación espacial genere resultados con cierta discrepancia, lo cual es producto de los sesgos que introduce la inclusión de estaciones de tráfico y mesoescala para el proceso de interpolación; el caso contrario ocurre si éstas se omiten, lo cual termina por generar una superficie de interpolación en la mayoría de los casos con pocas transiciones, que no permitiría evidenciar los núcleos o zonas de mayor contaminación, debido a la cercanía entre los valores reportados por estaciones de una

misma clase, adicionalmente no se cuenta con la cantidad suficiente de estaciones de un mismo tipo para poder generar una superficie representativa de la zona de estudio (Valle de Aburrá).

Las predicciones del modelo AERMOD, durante el estudio demostraron estar en la mayoría de los escenarios evaluados alejadas de lo esperado, pero hay suficiente evidencia en la literatura sobre su potencialidad para ser usado en la predicción de la exposición a la que se encuentran expuestas las personas, producto de las emisiones tanto de fuentes móviles, fijas o de área. Lo que se requiere para mejorar la calidad de las predicciones es definir una menor escala del modelo, unido a una actualización de los inventarios de emisiones, así como del levantamiento de las estructuras dentro del área de aplicación del modelo.

7 INCONVENIENTES Y RECOMENDACIONES

El principal inconveniente identificado para mejorar las predicciones del modelo de dispersión AERMOD para los contaminantes PM₁₀ y PM_{2.5}, depende en gran medida de la calidad de los inventarios de emisiones, los cuales aún carecen de una base de datos consolidada y coherente. Además, no es claro el aporte de las fuentes de área (canteras, construcciones, canchas, etc.). Para las fuentes móviles hay algunas celdas dentro del Valle de Aburrá que no poseen inventario de emisiones como se muestra en la **Figura 69**; adicionalmente, al interior de las celdas que cuentan con información de emisiones (**Figura 70**), no todas las vías al interior de éstas se incluyeron durante la generación del inventario de emisiones proveniente de éstas. Otro aspecto que presenta cierta anomalía son los aforos realizados y que se utilizan como materia para la estimación de las emisiones, entre los que se destaca que las vías secundarias presentan aforos superiores a vías principales; además en puntos de unión de vías, la sumatoria de los vehículos que ingresan a una intersección es diferente de la cantidad que sale ver **Figura 71**, lo cual carece de sentido.

En cuanto a las fuentes fijas algunas no poseen la georreferenciación exacta, y empresas que cuentan con varias fuentes en muchos casos para todas se coloca la misma como se muestra en la **Figura 72**.

Figura 69. Celdas sin información de emisiones para fuentes móviles. Fuente: plataforma MODEAM, Universidad Pontificia Bolivariana sede Medellín.

Figura 70. Red vial con información de aforos en color. Fuente: plataforma MODEAM, Universidad Pontificia Bolivariana sede Medellín.

Figura 71. Incongruencia en aforos. Fuente: plataforma MODEAM, Universidad Pontificia Bolivariana sede Medellín.

Figura 72. Fuentes fijas con igual georreferenciación. Fuente: plataforma MODEAM, Universidad Pontificia Bolivariana sede Medellín.

Se recomienda para mejorar el desempeño del modelo AERMOD: actualización del inventario de emisiones, trabajar con periodos de tiempo promedios mensuales y anuales, definir un radio de estudio apropiado para evaluar el impacto en salud (lo cual no se pudo lograr por no contarse con un inventario de fuentes adecuado para tal fin), tratar las fuentes de emisión exteriores al área de estudio como aporte de fondo (lo que simplificaría las simulaciones), poseer registros de datos dentro de la zona de estudio del contaminante de interés, ya que esta información se puede utilizar para la calibración del modelo, y por último realizar un levantamiento de las estructuras dentro del radio definido, ya que éstas alteran sustancialmente la forma en que el modelo predice la dispersión de los diferentes contaminantes desde la fuente hasta los receptores.

8 REFERENCIAS BIBLIOGRÁFICAS

- 1. Visscher A de. Air Dispersion Modeling. Foundations and Applications. Vol. 53, Journal of Chemical Information and Modeling. 2014. 662 p.
- Gulia S, Kumar A, Khare M. Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J Sci Ind Res [Internet].
 2015;74(May):302–7. Available from: http://nopr.niscair.res.in/bitstream/123456789/31451/1/JSIR 74(5) 302-307.pdf
- Michanowicz DR, Shmool JLC, Tunno BJ, Tripathy S, Gillooly S, Kinnee E, et al. A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM_{2.5}. Atmos Environ [Internet]. 2016;131:307–15. Available from: http://dx.doi.org/10.1016/j.atmosenv.2016.01.045
- 4. Abril GA, Diez SC, Pignata ML, Britch J. Particulate matter concentrations originating from industrial and urban sources: Validation of atmospheric dispersion modeling results. Atmos Pollut Res. 2016;7(1):180–9.
- 5. Caputo M, Giménez M, Schlamp M. Intercomparison of atmospheric dispersion models. Atmos Environ. 2003;37(18):2435–49.
- 6. Holmes NS, Morawska L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos Environ. 2006;40(30):5902–28.
- 7. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N. Modelling air quality in street canyons: A review. Atmos Environ. 2003;37(2):155–82.
- 8. Environmental M for the. Atmospheric dispersion modelling [Internet]. Good practice guide for atmospheric dispersion modelling. 2017. Available from: http://www.mfe.govt.nz/publications/air/good-practice-guide-atmospheric-dispersionmodelling/2-which-dispersion-model-use
- 9. Venkatram A, Modeling D. Introduction to aermod. 2005;1–24.
- 10. Michanowicz AR. Hybrid Dispersion/ Land Use Regression Modeling for Improving Air Pollutant Concentration Estimates. 2014;
- 11. Mokhtar MM, Hassim MH, Taib RM. Health risk assessment of emissions from a coal-fired power plant using AERMOD modelling. Process Saf Environ Prot [Internet]. 2014;92(5):476–85. Available from: http://dx.doi.org/10.1016/j.psep.2014.05.008
- 12. Tartakovsky D, Broday DM, Stern E. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ Pollut [Internet]. 2013;179:138–45. Available from: http://dx.doi.org/10.1016/j.envpol.2013.04.023

- 13. Seangkiatiyuth K, Surapipith V, Tantrakarnapa K, Lothongkum AW. Application of the AERMOD modeling system for environmental impact assessment of NO 2 emissions from a cement complex. J Environ Sci [Internet]. 2011;23(6):931–40. Available from: http://dx.doi.org/10.1016/S1001-0742(10)60499-8
- 14. Universidad Pontificia Bolivariana. Administración del sistema de informacion metropolitano de la calidad del aire. 2010;104.
- 15. Gobernación de Antioquia. Valle De Aburrá [Internet]. 2017. Available from: http://antioquia.gov.co/index.php/antioquia/regiones/valle-de-aburrá
- 16. Área Metropolitana del Valle de Aburrá. Atlas Metropolitano. 2010. 46 p.
- 17. Aregui G B. SISTEMA DE GENERACIÓN ELÉCTRICA ADELCA MODELO DE DISPERSIÓN DE CONTAMINANTES ATMOSFÉRICOS. 2014.
- 18. United States Environmental Protection Agency. Air Quality Dispersion Modeling Preferred and Recommended Models [Internet]. 2017. Available from: https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models
- 19. Breeze. AERMOD / ISC Model air quality impacts due to industry emissions for permitting and planning purposes [Internet]. 2017. Available from: http://www.breeze-software.com/Software/AERMOD/Features/
- 20. Agency USEP, Quality A, Division A. Addendum User â€[™] S Guide for the Aermod Terrain Preprocessor (Aermap). 2011;(October 2004):96.
- 21. Universidad Pontificia Bolivariana. MODEAM [Internet]. 2017. Available from: http://modemed.upb.edu.co/zigma2/index.php?option=com_content&view=article&id=175 &Itemid=603
- 22. esri. Métodos determinísticos para la interpolación espacial [Internet]. 2017. Available from: https://desktop.arcgis.com/es/arcmap/latest/extensions/geostatistical-analyst/deterministicmethods-for-spatial-interpolation.htm
- 23. QGIS. Análisis Espacial (Interpolación) [Internet]. 2017. Available from: https://docs.qgis.org/2.8/es/docs/gentle_gis_introduction/spatial_analysis_interpolation.html
- 24. GOLDEN SOFTWARE L. Introduction to Gridding Methods. 2017.
- 25. GOLDEN SOFTWARE L. A Basic Understanding Of Surfer Gridding Methods Part 1 [Internet]. 2017. Available from: https://support.goldensoftware.com/hc/enus/articles/231348728-A-Basic-Understanding-of-Surfer-Gridding-Methods-Part-1
- 26. Altshuiler AP. Regional Transport and Transformation of Sulfur Dioxide to Sulfates in the U. S. J Air Pollut Control Assoc. 1976;26(4):318–25.