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• Endometrial cancer is the most common gynecological cancer in developed countries.
• Metabolomics may uncover novel pathways linked to endometrial cancer.
• 853 endometrial cancer case-control pairs from EPIC underwent metabolomic profiling.
• Specific amino acids, sphingolipids & carnitine were linked to endometrial cancer.
• If causal, these pathways may offer novel targets for endometrial cancer prevention.
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Background. Endometrial cancer is strongly associated with obesity and dysregulation of metabolic factors
such as estrogen and insulin signaling are causal risk factors for thismalignancy. To identify additional novelmet-
abolic pathways associated with endometrial cancer we performed metabolomic analyses on pre-diagnostic
plasma samples from 853 case-control pairs from the European Prospective Investigation into Cancer and Nutri-
tion (EPIC).

Methods. A total of 129metabolites (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hex-
oses, and sphingolipids) were measured by liquid chromatography-mass spectrometry. Conditional logistic re-
gression estimated the associations of metabolites with endometrial cancer risk. An analysis focusing on
clusters of metabolites using the bootstrap lasso method was also employed.

Results.After adjustment for bodymass index, sphingomyelin [SM] C18:0was positively (OR1SD: 1.18, 95% CI:
1.05–1.33), and glycine, serine, and free carnitine (C0) were inversely (OR1SD: 0.89, 95% CI: 0.80–0.99; OR1SD:
0.89, 95% CI: 0.79–1.00 and OR1SD: 0.91, 95% CI: 0.81–1.00, respectively) associated with endometrial cancer
risk. Serine, C0 and two sphingomyelins were selected by the lasso method in >90% of the bootstrap samples.
The ratio of esterified to free carnitine (OR1SD: 1.14, 95% CI: 1.02–1.28) and that of short chain to free
acylcarnitines (OR1SD: 1.12, 95% CI: 1.00–1.25) were positively associated with endometrial cancer risk. Further
adjustment for C-peptide or other endometrial cancer risk factors only minimally altered the results.

Conclusion. These findings suggest that variation in levels of glycine, serine, SM C18:0 and free carnitine may
represent specific pathways linked to endometrial cancer development. If causal, these pathwaysmay offer novel
targets for endometrial cancer prevention.

© 2021 Published by Elsevier Inc.
1. Introduction

Endometrial cancer is the sixthmost common cancer amongwomen
with more than 380,000 new cases diagnosed worldwide in 2018 [1].
Due to the obesity epidemic and declining rates of hysterectomy the in-
cidence of endometrial cancer has been growing in the past decades and
this trend is projected to continue in the coming decades [2–4]. Known
modifiable and non-modifiable risk factors explain 45% to 70% of endo-
metrial cancer cases depending on their prevalence [5–7]. A worldwide
analysis conducted on the burden of cancer cases attributable to high
body-mass-index estimated that 34% of endometrial cancer cases in
2012 could be attributed to high BMI but that this proportion varied
from 17% in very low human development index (HDI) countries to
42% in high HDI countries [8]. Mechanistically, dysregulation of several
metabolic pathways have been linked with endometrial cancer devel-
opment including exposure to high estrogen levels, hyperinsulinemia,
or elevated chronic inflammation [9–11]. However, these pathways
may only partly account for the biological mechanisms involved in en-
dometrial cancer development and detailed metabolic profiling and as-
sessment of metabolic intermediates could provide important new
insights into endometrial tumorigenesis with implications for risk as-
sessment and novel preventative strategies.

Metabolomics is a powerful high-throughput approach to identify
metabolites ormetabolic signatures that are associatedwith disease de-
velopment and could help identify novel biological mechanisms in-
volved in pathogenesis [12–17]. Currently, few epidemiologic studies
have investigated the association between circulating metabolites of
major biochemical classes and subsequent risk of endometrial cancer,
and all were case-control studies of small sample size with blood sam-
ples collected after diagnosis [18–22]. To address these gaps in the liter-
ature, we performed a targeted metabolomic study in pre-diagnostic
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blood samples from 853 case-control pairs from the European Prospec-
tive Investigation into Cancer and Nutrition (EPIC).

2. Methods

2.1. Study population

EPIC is an ongoing multi-center cohort study including approxi-
mately 520,000 participants recruited in the early 1990's from ten
European countries [23]. At recruitment, detailed information was col-
lected on dietary, lifestyle, reproductive, medical and anthropometric
data and a baseline blood sample was collected frommost participants.
All participants provided written informed consent to participate in the
EPIC study. This study was approved by the ethics committee of the In-
ternational Agency for Research on Cancer (IARC) and all centers.

Subjects were selected among participants who provided a blood
sample and were cancer-free (other than non-melanoma skin cancer)
at recruitment into the cohort. Womenwho reported having undergone
hysterectomy were excluded. Incident cancer cases were identified ei-
ther through record linkage with cancer registries or through active
follow-up.Womendiagnosedwithfirst primary epithelial invasive endo-
metrial cancer were selected as cases. Cancers were coded according
to the Third Edition of the International Classification of Diseases for On-
cology. Type I histologies included endometrioid adenocarcinoma,
adenosquamous carcinoma, adenocarcinomawith squamousmetaplasia,
adenocarcinoma not otherwise specified, adenocarcinoma in adenoma-
tous polyp, mucinous adenocarcinoma, mucin-producing adenocarci-
noma (codes 8380, 8560, 8570, 8140, 8210, 8480, 8481). The inclusion
of adenocarcinoma not otherwise specified in type I is justified
because endometrioid adenocarninoma is the most common type of ad-
enocarcinoma. Type II histologies included squamous cell carcinoma,
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clear cell adenocarcinoma, mixed cell adenocarcinoma, serous
cystadenocarcinoma, papillary serous cystadenocarcinoma (codes
8070, 8310, 8323, 8441, 8460). A total of 761 cases were classified as
type I and 42 cases were classified as type II. Fifty cases with other or un-
knownhistologieswere not classified into either type (codes 8000, 8010,
8020, 8260, 8950, 8980).

For each EPIC center, end dates of the study period were defined as
the latest dates of complete follow-up for both cancer incidence and
vital status (dates varied between centers, from June 2008 to December
2012). The median follow-up time of the eligible participants was 12.1
years (5th–95th percentiles: 2.0–17.8 years).

For each endometrial cancer case, one control was chosen at random
among appropriate risk sets using incidence density sampling, as previ-
ously described [9]. A total of 853 cases and 853 controls were included
in the analysis.

2.2. Laboratory measurements

Targeted metabolomic analyses of plasma samples were conducted
in the laboratory of Cancer Metabolism and Systems Toxicology (Impe-
rial College London), by liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) platform using a 1290 Agilent UPLC coupled to
a QTRAP 4000 SCIEX mass spectrometer. Metabolite profiling was car-
ried out using the AbsoluteIDQ® p 180 Kit (Biocrates Life Sciences AG,
Innsbruck, Austria) following the sample preparation protocol recom-
mended by the manufacturer.

Samples were prepared in 96-well plates (23 well plates in total)
andmatched case-control sets were measured on the same plate. Labo-
ratory personnel were blinded to case-control status of the samples.
Along with the study samples, four replicates of a standardized plasma
sample, standard reference material (SRM 1950), purchased from
National Institute of Standards and Technology (NIST), were dispersed
between study samples in each batch. The analytical performance
was assessed based on the intra- and inter-batch coefficients of varia-
tion, calculated for all metabolites measured in the NIST samples
(Supplementary Table 1).

C-peptide was measured in the same laboratory at IARC, in two
phases: 378 samples were previously measured in 2007 by an
immunoradiometric assay by Immunotech (Marseille, France) with
CVs < 11% and 1260 samples were measured in 2019 by an ELISA
assay by Mercodia (Uppsala, Sweden) with CVs <7%.

2.3. Filtering of metabolites

Out of the 188 metabolites included in the kit, 31 were not detected
in plasma and 8 had inter- or intra-batch CVs > 20% (Supplementary
Table 1). Values lower than the lower limit of quantification (LLOQ),
or higher than the upper limit of quantification (ULOQ), as well as
lower than plate-specific limit of detection (LOD) (for compoundsmea-
sured with a semi-quantitative method) were considered to be outside
of themeasurable range. Metabolites were excluded from the statistical
analyses if more than 20% of observations were outside the measurable
range (n=20, Supplementary Table 1). A total of 129metabolites were
finally retained for statistical analyses. Of these metabolites, 108 had all
values in the measurable range. For the remaining 21 metabolites,
values outside the quantifiable range (all lower than LLOQ or LOD)
were imputed with half the LLOQ or half the plate-specific LOD, respec-
tively. For those 129 metabolites the median intra-batch CV was 7.0
(5 CVs > 15%) and the median inter-batch CV was 8.8 (11 CVs > 15%).

2.4. Statistical analyses

Characteristics of cases and controls were described usingmean and
standard deviation (SD) or frequencies. Log-transformed metabolite
concentrations were used in all analyses. We used conditional logistic
regression to estimate the risk of endometrial cancer per standard
3

deviation (SD) increase in log metabolite concentration. We also inves-
tigated associations between endometrial cancer risk and specific me-
tabolite ratios and sums (listed in Supplementary Table 2). Models
were further adjusted for body mass index (BMI) or waist circumfer-
ence (WC). None of the additional potential confounders that were
evaluated (listed in Table 1) changed parameter estimates by more
than 10%. For these variables, missing values were assigned themedian
(continuous variables) or mode (categorical variables) if they repre-
sented less than 5% of the population, or were otherwise classified in a
“missing” category (breastfeeding, ever use of MHT). Additional adjust-
ment for C-peptide concentrations (standardized by phase of the mea-
surements) as a biomarker of hyperinsulinemia was also performed.
Multiple testing was addressed by controlling for family-wise error
rate at α = 0.05 by permutation-based stepdown minP adjustment of
P-values (Perm-Pvalues), as this method better accounts for the depen-
dence of the tests [24,25].

Heterogeneity was investigated bymenopausal status, use of exoge-
nous hormones and fasting status at blood collection, age at diagnosis,
time between blood collection and diagnosis, histological subtypes,
self-reported diabetes, WC and BMI, by introducing interaction terms
in the models and using likelihood ratio tests. For WC and BMI, uncon-
ditional logistic regression adjusted for each matching factor was used.
Sensitivity analyses were performed by restriction of analyses to hor-
mone non-users, fasting participants, non-diabetic participants, and
cases diagnosed after the first two years following blood collection.

Themain analyses described above were complemented by an anal-
ysis focusing on clusters of metabolites, where Principal component
analysis was used to derive one ``representative” for each cluster [26].
We used BMI-residuals of each cluster representative as predictors in
an L1-norm penalized conditional logistic regression model that was
applied on 100 bootstrap samples. For each bootstrap sample, obtained
by randomly sampling 853 matched case-control pairs with replace-
ment from our original sample, a lasso (L1-norm penalized conditional
logistic regression model) was applied with the penalty parameter set
to the largest value such that the 5-fold cross validated error waswithin
one standard error of theminimum (BoLassomethod) [27]. The propor-
tion of bootstrap samples for which the lasso produces a non-null coef-
ficient for each cluster representative is a measure of our level of
confidence in the fact that this particular metabolite or group of metab-
olites is associated with endometrial cancer, after adjustment for BMI
and other relevant metabolites.

All statistical tests were two-sided. Analyses were conducted using
the SAS (version 9.4, Copyright © 2017, SAS Institute Inc.) and R (pack-
ages Epi, NPC, ClustOfVar and cLogitL1) softwares [28–30].

3. Results

Endometrial cancer cases were on average 63 years old at diagnosis
andwere diagnosed 8.3 years after blood collection (Table 1). Compared
to controls, cases were on average slightly younger at menarche
and older at menopause, were less often oral contraceptive users and
slightly more often MHT users. Cases also had higher BMI, waist and
hip circumferences than controls.

Twenty-eight metabolites were statistically significantly associated
with endometrial cancer risk, including 12 amino acids, 12
glycerophospholipids, 2 acylcarnitines and 2 sphingolipids (Fig. 1A
and supplementary Table 3a). After adjustment for BMI (Fig. 1B and
supplementary Table 3b), two metabolites were statistically signifi-
cantly associated with endometrial cancer risk: sphingomyelin [SM]
C18:0 (OR1SD: 1.18, 95% CI: 1.05–1.33, P-value = 0.006, Perm-Pvalue
= 0.38), and glycine (OR1SD: 0.89, 95% CI: 0.80–0.99, P-value =0.03,
Perm-Pvalue = 0.87). Serine and free carnitine (C0) showed a border-
line significant inverse association with endometrial cancer risk
(OR1SD: 0.89, 95% CI: 0.79–1.00, P-value =0.05, Perm-Pvalue = 1.00
and OR1SD: 0.91, 95% CI: 0.81–1.00, P-value =0.07, Perm-Pvalue =
0.82, respectively). Similar results were observed after adjustment for



Table 1
Baseline characteristics of endometrial cancer cases and matched controls – mean (SD) or N (%).

Variable N Cases (N = 853) Controls (N = 853)

Age at blood collectiona 1706 54.7 (7.5) 54.7 (7.5)
Age at diagnosis 853 63.0 (7.9) –
Time between blood collection and diagnosis (years) 853 8.3 (4.5) –
Fasting statusa 1676

0–3 h 374 (44.7%) 375 (44.7%)
3–6 h 153 (18.3%) 154 (18.4%)
>6 h 310 (37.0%) 310 (36.9%)

Age at menarche (years) 1674 12.8 (1.5) 13.1 (1.6)
Age at first full term pregnancy (years)b 1428 25.1 (4.2) 25.1 (4.1)
Number of full term pregnanciesb 1626 1.9 (1.3) 2.1 (1.3)
Ever use of oral contraceptives (OC) 1680 339 (40.5%) 419 (49.8%)
Menopausal status at blood collectiona 1706

Premenopausal 428 214 (25.1%) 214 (25.1%)
Postmenopausal 1030 515 (60.4%) 515 (60.4%)
Perimenopausal 248 124 (14.5%) 124 (14.5%)

Age at menopause (years)c 787 50.9 (4.1) 49.6 (4.3)
Ever use of menopausal hormone therapy (MHT)c 1011 193 (38.1%) 190 (37.6%)
Use of OC/MHT at blood collectiona 1664 164 (19.7%) 164 (19.7%)
Smoking status 1667

Never 538 (64.8%) 511 (61.1%)
Former 178 (21.4%) 178 (21.3%)
Smoker 115 (13.8%) 147 (17.6%)

Cambridge physical activity index 1666
Inactive 242 (29.2%) 209 (25.0%)
Moderately inactive 286 (34.5%) 313 (37.4%)
Moderately active 185 (22.3%) 203 (24.2%)
Active 116 (14.0%) 112 (13.4%)

Alcohol at recruitment (g/day) 1702
Non-drinker 194 (22.8%) 191 (22.4%)
>0–3 285 (33.6%) 269 (31.6%)
>3–12 212 (25.0%) 223 (26.1%)
>12–24 158 (18.6%) 170 (19.9%)

Educational level 1624
primary/no schooling 349 (43.2%) 376 (46.1%)
technical/professional/secondary 325 (40.2%) 292 (35.8%)
longer education 134 (16.6%) 148 (18.1%)

Height (cm) 1706 160.7 (6.8) 161.0 (7.0)
Weight (kg) 1706 71.4 (13.4) 66.5 (10.7)
Body Mass Index (kg/m2) 1706 27.7 (5.4) 25.7 (4.1)
BMI (WHO categories) 1706

Underweight (<18.5 kg/m2) 3 (0.3%) 8 (0.9%)
Normoweight (18.5–24.9 kg/m2) 300 (35.2%) 413 (48.5%)
Overweight (25–29.9 kg/m2) 308 (36.1%) 316 (37.0%)
Obese (≥30 kg/m2) 242 (28.4%) 116 (13.6%)

Waist circumference (cm) 1570 85.3 (12.4) 81.3 (10.5)
Hip circumference (cm) 1570 105.6 (10.8) 101.6 (8.5)
Waist/Hip Ratio 1570 0.8 (0.1) 0.8 (0.1)
Prevalent diabetes 1462 34 (4.6%) 26 (3.6%)

a matching factor.
b Among parous women*.
c Among postmenopausal women.
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WC (supplementary Table 3c) or C-peptide (supplementary Table 3d).
None of these associations reached statistical significance after correc-
tion for multiple testing (Perm-Pvalues>0.38).

Cluster PCA identified 64 clusters (supplementary Table 4a), of
which 3 (representing glycine, serine and SM C18:0 + SM C18:1)
showed the strongest associations with endometrial cancer risk (sup-
plementary Table 4b). Using the Bootstrap Lasso method, the following
clusters were associatedwith endometrial cancer risk inmore than 90%
of the bootstrap samples (Glutamate+Taurine, Serine, C0, PCaa_C42:2,
PC_aa_C42:5 + PCaa_C42:6, SM_C18:0 + SM_C18:1).

Two metabolite ratios were positively associated with endometrial
cancer risk after BMI adjustment (Fig. 2B and supplementary
Table 3b): the ratio of esterified to free carnitine (OR1SD: 1.14, 95% CI:
1.02–1.28, P-value = 0.02, Perm-Pvalue = 0.31) and the ratio of short
chain acylcarnitines to free carnitine (OR1SD: 1.12, 95% CI: 1.00–1.25,
P-value = 0.05, Perm-Pvalue = 0.59).

Following restriction of the analyses to non-hormone users
(N = 618 pairs), non-diabetics (N = 819 pairs) or to fasting samples
4

(N = 310 pairs), similar BMI-adjusted estimates were observed al-
though associations lost statistical significance because of reduced sam-
ple size in these sub-analyses. Associations with SM C18:0 were almost
identical among non-hormone users and non-diabetics but were
strongly attenuated and lost statistical significance when analyses
were restricted to fasting samples (OR1SD: 1.10, 95% CI: 0.91–1.33, P-
value = 0.32, Perm-Pvalue = 1.00). When cases diagnosed within 2
years after blood collection were excluded, slightly stronger associa-
tions were observed for SM C18:0 (OR1SD: 1.21, 95% CI: 1.07–1.37, P-
value = 0.002, Perm-Pvalue = 0.20), glycine (OR1SD: 0.87, 95% CI:
0.77–0.97, P-value = 0.02, Perm-Pvalue = 0.68) and serine (OR1SD:
0.87, 95% CI: 0.77–0.98, P-value= 0.03, Perm-Pvalue= 0.97) and 2 ad-
ditional amino-acids were positively associated with endometrial can-
cer risk, valine (OR1SD: 1.15, 95% CI: 1.01–1.30, P-value = 0.03,
Perm-Pvalue = 0.77) and isoleucine (OR1SD: 1.14, 95% CI: 1.00–1.30,
P-value = 0.04, Perm-Pvalue = 0.91).

No significant heterogeneitywas observed formostmetaboliteswhen
analyses were stratified by BMI (supplementary Table 3e and f), waist



Fig. 1.Odds ratios (ORs) and P-values for the associations betweenmetabolites and risk of
endometrial cancer in (A) unadjusted models (B) BMI-adjusted models.
PC: phosphatidylcholine; SM: sphingomyelin. ORs are estimated per standard deviation
(SD) increase in log-transformed metabolite concentrations, from logistic regression
conditional on matching variables. Figs. A and B shows statistical significance based on
P-values (significant metabolites above dotted line).

Fig. 2. Odds ratios (ORs) and P-values for the associations between metabolite ratios and
risk of endometrial cancer in (A) unadjusted models (B) BMI-adjusted models.
ORs are estimated per standard deviation (SD) increase in log-transformed metabolite
concentrations, from logistic regression conditional on matching variables. Figs. A and B
shows statistical significance based on P-values (significant metabolites above dotted
line).
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circumference,menopausal status, hormoneuse, histological subtype, age
at diagnosis, lag time between blood collection and diagnosis or diabetes
status (data not shown). Only serine showed a stronger association
among cases diagnosedmore than 8 years after blood donation (cases di-
agnosed ≤8 years: OR1SD: 1.03, 95% CI: 0.87–1.23, P-value = 0.70, Perm-
Pvalue = 0.96; cases diagnosed >8 years OR1SD: 0.78, 95% CI:
0.67–0.92), P-value = 0.003, Perm-Pvalue = 0.82; Pheterogeneity = 0.03).

4. Discussion

In this large-scale prospective study of endometrial cancer, glycine,
serine and free carnitine levels were inversely, and the sphingolipid
SM C18:0 positively, associated with endometrial cancer risk even
after control for BMI and other endometrial cancer risk factors. In addi-
tion, the ratio of esterified to free carnitine and the ratio of short chain
acylcarnitines to free carnitine were both positively associated with en-
dometrial cancer risk. However, none of these associations remained
statistically significant following control for multiple comparisons.

Very few studies have evaluated metabolite profiles in relation to
endometrial cancer risk and all were case-control studies of small sam-
ple size (number of endometrial cancer cases varying from 30 to 250)
[18–22]. All studies but one [19] used different assays or methods to
measuremetabolites, potentially complicating the comparison between
5

studies and with our results. Nevertheless, all studies observed specific
metabolic alterations among cases compared to controls and three stud-
ies observed significant differences in amino acid levels although spe-
cific amino acids identified varied in each study [20–22,31].

In this analysis we observed a potential inverse association between
glycine and serine and endometrial cancer risk. Glycine and serine are
non-essential amino acidswhich, in addition to their function in protein
formation, play critical roles in metabolic regulation including
one‑carbon metabolism [32]. Low plasma glycine levels have consis-
tently been observed in individuals with obesity, insulin resistance
and type 2 diabetes which are important risk factors for endometrial
cancer [33–35]. It is therefore possible that glycinemay be related to en-
dometrial cancer through modification of insulin signaling. However,
adjustment for C-peptide concentrations only slightly attenuated risk
estimates, indicating a potential insulin-independent effect. Perturba-
tions of glycine and serine metabolism are a common phenomenon in
cancer development and tumours have an elevated demand for these
amino acids [32]. In this study, similar estimates were observed for gly-
cine and serine even after exclusion of cases that arose within 2-years
after blood collection suggesting that the presence of sub-clinical dis-
ease was unlikely to be a major determinant of the observed relation-
ship. Further work is now needed to explore whether glycine and
serine play a direct causal role in endometrial cancer.
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The potential positive association between SM C18:0 and endome-
trial cancer risk is in line with a recent report of a positive association
of SM C18:0 with the endometrioid subtype of ovarian cancer in a pro-
spective cohort [36]. Associations between sphingomyelins and diabe-
tes and insulin resistance have also been observed and may partly
explain their association with endometrial cancer [37,38]. Alterations
of sphingolipidmetabolismhave been previously shown in endometrial
cancer tissue compared to healthy endometrium [39] as well as in
plasma of endometrial cancer patients compared to controls [19]. Inter-
estingly, serinewhich showed an inverse relationshipwith endometrial
cancer risk in our study forms part of the sphingolipid backbone.
Sphingomyelins can be converted into ceramides that are involved in
cell proliferation, migration and autophagy which may also explain
their potential role in carcinogenesis [40–42].

We also observed a potential inverse association of free carnitine C0
with endometrial cancer risk and positive associations with the ratio of
esterified to free carnitine and of short chain acylcarnitines to free carni-
tine. Carnitine plays an important role in the transport of long chain
fatty acids into the mitochondrial matrix [43] and the ratio of short
chain acylcarnitines to free carnitine is considered to be a measure of
overall ß-oxidation activity. Moreover, the ratio of esterified to free car-
nitine is elevated in patients with type 2 diabetes and carnitine admin-
istration has been shown to improve insulin-mediated glucose disposal
and storage in both diabetics and non-diabetic individuals [44]. The in-
verse association with C0 observed in our study may therefore reflect
improved insulin sensitivity in women with elevated C0. Interestingly,
a previous study conducted in the EPIC cohort reported a positive asso-
ciation between the acylcarnitine C2 and breast cancer risk [45]. These
studies implicate a potential role for carnitine metabolism in obesity-
related cancers which requires replication in other cohorts and mecha-
nistic exploration.

Strengths of this investigation include the large number of incident
endometrial cancer cases with pre-diagnostic specimens and extensive
data on endometrial cancer risk factors. In addition, we were able to as-
sess potential reverse causation by stratifying the analyses by time be-
tween blood collection and diagnosis. Our study also has limitations,
particularly that the blood samples were collected from participants at
one time point only. However, most of plasma metabolites analyzed
have shown good reproducibility over time [46,47]. In particular, SM
C18:0, glycine and C0 all had intra-class correlation coefficients >0.6
in samples collected 2 years apart. As our study has a mean follow-up
of around 8 years, we cannot rule out some potential changes in some
of the metabolites during follow-up that may have impacted the ob-
served associations. Another limitation is that most of the measured
compounds were quantified on a relative scale only because of lack of
specific standards. Finally, none of the observed associations survived
conservative adjustment for multiple testing, indicating that the poten-
tial associations, although biologically plausible, may be observed by
chance due to the large number of tests conducted. Therefore, replica-
tion in future studies and in experimental models is now needed.

Compared to the untargeted approach, targeted metabolomics al-
lows the measurements of quantified or semi-quantified identified
compounds that facilitates comparability with other studies. The me-
tabolites measured in the current study represent key biochemical
pathways and have been previously associated with a number of
chronic and metabolic diseases, including cardiovascular disease [48],
metabolic syndrome [49], obesity [50,51], diabetes [52,53] and cancer
[45,54,55]. Therefore, using this approach, we can target pathways
that are potentially dysregulated in obesity and/or diabetes, two
established risk factors for endometrial cancer as well as in cancer de-
velopment. Further research with a fully untargeted platform would
be an important next step to capture further novel pathways related
to endometrial cancer development.

In conclusion, we demonstrate for the first time in a prospective
study that alterations in concentrations of specific amino acids,
sphingolipids and carnitinemay be associatedwith endometrial cancer.
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If validated and shown to be causal, these findings may offer clues to
novel etiologic pathways underlying endometrial cancer development.
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