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Abstract

Background: A polymorphism in a gene may exert its effects on multiple phenotypes. The aim of this study is to
explore the association of 10 metabolic syndrome candidate genes with excess weight and adiposity and evaluate
the effect of perinatal and socioeconomic factors on these associations.

Methods: The anthropometry, socioeconomic and perinatal conditions and 10 polymorphisms were evaluated in
1081 young people between 10 and 18 years old. Genotypic associations were calculated using logistic and linear
models adjusted by age, gender, and pubertal maturation, and a genetic risk score (GRS) was calculated by
summing the number of effect alleles.

Results: We found that AGT-rs699 and the IRS2-rs1805097 variants were significantly associated with excess weight,
OR = 1.25 (CI 95% 1.01–1.54; p = 0.034); OR = 0.77 (CI 95% 0.62–0.96; p = 0.022), respectively. AGT-rs699 and
FTO-rs17817449 variants were significantly and directly associated with body mass index (BMI) (p = 0.036 and p = 0.031),
while IRS2-rs1805097 and UCP3-rs1800849 were significantly and negatively associated with BMI and waist circumference,
correspondingly. Each additional effect allele in GRS was associated with an increase of 0.020 log(BMI) (p = 0.004).
No effects from the socioeconomic and perinatal factors evaluated on the association of the candidate genes with the
phenotypes were detected.

Conclusions: Our observation suggests that AGT-rs699 and FTO-rs17817449 variants may contribute to the risk
development of excess weight and an increase in the BMI, while IRS2-rs1805097 showed a protector effect; in addition,
UCP3- rs1800849 showed a decreasing waist circumference. Socioeconomic and perinatal factors had no effect on the
associations of the candidate gene.
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Background
The increasingly early onset of overweight and its long-
term consequences focus the need to develop interven-
tions for children, teens, and young adults [1]. Obesity,
especially the central type, generates conditions that in-
crease the risk of metabolic syndrome (MetS), defined as
a set of traits that increase the risk of cardiovascular dis-
ease and diabetes mellitus 2 [2].
Being overweight is a result of a continuing imbalance

between consumption and energy expenditure of an indi-
vidual, where food consumption depends on, among
others, environmental factors such as availability and gen-
etic factors that influence appetite. Energy expenditure may
also be affected by both lifestyle and metabolic efficiency,
which, in turn, is influenced by genetic factors [3, 4].
Studies have shown that a polymorphism in a gene re-

lated to a given system may exert its effects in other path-
ways and influence multiple phenotypes [5]. Several loci
susceptible to the components of MetS, such as those
evaluated in this study, may play a role in the risk of ex-
cess weight. Uncoupling Protein-3 (UCP3) is involved in
energy expenditure by stimulating thermogenesis, making
it an attractive target for studies on the regulation of body
weight [6]; Calpain 10 (CAPN10) is involved in numerous
cellular functions, including signaling and adipocyte differ-
entiation [7]; fat mass and obesity-associated (FTO) in-
creases energy intake by regulating the expression of
genes that control appetite [8]. The Insulin Receptor Sub-
strate 2 (IRS2) and the protein that codes the transcription
factor of the 7-like 2 (TCF7L2) gene play an important
role in the transduction of insulin signaling [9, 10]; vari-
ants in the angiotensin-converting enzyme (ACE) and
angiotensinogen (AGT) genes are associated with hyper-
tension, finding the protein expression in adipose tissue
[11]; in fact, variations in ATP-binding cassette, sub-
family A (ABC1), member 1 (ABCA1), lipoprotein lipase
(LPL), and cholesteryl ester transfer protein (CETP), asso-
ciated with lipoprotein metabolism, contribute to the vari-
ation in adipogenesis.
Given these interactions between genetic and environ-

mental factors in the etiology of obesity, increasing evi-
dence reports differences in the frequency of these
variants among populations, ethnicities, genders, and
socioeconomic stratum [12, 13]. Studies related to the
presence of polymorphisms associated with the develop-
ment of adiposity measures have demonstrated discrep-
ant results among population [14, 15]. Latin American
populations, such as those in Colombia, are the result of
a recent admixture among three ancestral populations:
European, African, and Amerindian. Admixture can re-
sult in population stratification and may lead to spurious
associations rather than association of genes with disease
if the allele frequencies differ among the groups because
of systematic differences in ancestry. In addition,
socioeconomic stratum and parental education may be
related to food availability and the transmission of a food
culture [16, 17]; however, their relationship to the devel-
opment of obesity is not clear enough. Results in a
Mediterranean population suggest that education may
modify the genetic susceptibility of FTO to obesity, with
BMI being higher in non-university subjects compared
to university subjects [18]. On the other hand, Pigeyre
et al. [19] report the influence of maternal education in
the association of neuromedin B rs3809508 and the risk
of obesity. Perinatal conditions, such as increased or de-
creased fetal growth, as measured by weight and height
at birth, or low breastfeeding, may also influence the
likelihood of obesity later on in life [20].
Our hypothesis is that variants related to the MetS com-

ponents may be associated with BMI and adiposity mea-
sures and this could be modified by socioeconomic and
perinatal factors in young people aged 10 to 18 years.

Methods
Study design
The study is a cross-sectional study.

Participants
The sample consisted of 1081 young people between 10
and 18 years of age from Colombia, selected by random
sampling and who were participants of the cross-
sectional study “Variations in the Prevalence of Meta-
bolic Syndrome in Adolescents According to Different
Criteria Used for Diagnosis” [21], a study conducted be-
tween 2011 and 2012. The sample size was calculated
with a confidence level of 95%, with an estimated preva-
lence of overweight of 10.3% according to the National
Nutritional Situation Survey (2005) [22], a sample error
of 2%, and effect on design of 1.2.
Excluded from the study were those young people with

a habitual consumption of medications, young people
with diabetes and genetic diseases, who are highly com-
petitive athletes, young pregnant women, or those who
were breastfeeding.

Measures
Perinatal and diseases history
The history of diseases (presence or absence of the dis-
ease) was considered in relatives to the second degree of
consanguinity. Additionally, the perinatal history, such
as birth weight (low <2500 g and high >4000 g), breast-
feeding and duration, was also determined.

Parental education and socioeconomic stratum
Parental education and socioeconomic stratum were de-
termined. The level of education was categorized into
primary (0–6 years) and secondary (12 years and
subsequent studies (>12 years); the stratum was
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determined as low (strata 1 and 2), medium (3 and 4),
and high (5 and 6), according to the National Adminis-
trative Department of Statistics [23].

Pubertal maturation
The stage of pubertal maturation according to the
methods established for this purpose [24, 25] was also
evaluated.

Anthropometric evaluations
Weight, height, waist circumference, triceps, and sub-
scapular fat fold were measured in all young people with
equipment and international techniques before training
and standardization of the evaluators; each measurement
was assessed and recorded twice. For the classification
of the nutritional status, the BMI (weight in kg/height in
m2) was calculated; participants were classified accord-
ing to the 2007 World Health Organization (WHO)
BMI-for-age and gender reference standard [26]. Over-
weight was defined as BMI percentile ≥85.0th; adequate
as BMI percentile <85.0th. Waist circumference was
considered as being high with a value of more than p90
of the values for Mexican–American young people from
the U.S. Third National Health and Nutrition Examin-
ation Survey [27]. The percentage of total body fat
(%BF) was calculated with the subscapular and triceps
fat folds, according to Lohman et al. [28] and was classi-
fied as obesity when it was >25% in males and >32% in
females, adequate between 12 and 25% in males and 25
and 32% in females, and deficient when it was <12% in
males and <15% in females [28].

Genotyping
After excluding individuals related up to the third degree
of consanguinity determined through clinical histories
and information provided in the General Information
questionnaire, ten variants were genotyped in 1005
youth: IRS2-rs1805097, CAPN10-rs3842570, UCP3-
rs1800849, FTO-rs17817449, TCF7L2-rs7903146, AGT-
rs699, ACE-rs4340, LPL-rs285, CETP-rs708272, and
ABCA1-rs2230806; the genotyping was performed by
polymerase chain reaction-restriction fragment length
polymorphism. The PCR was performed in a 25-μl vol-
ume containing 10 ng genomic DNA, 10 × PCR buffer
with 1.5 mM MgCl2, 0.5 mM dNTPs, 0.5 units of Taq
polymerase, and 5 μmol of each primer. PCR conditions
included one step initial desaturation at 95 °C for 3 min,
35 cycles (95 °C for 45 s, 55–62 °C for 45 s, and 72 °C
for 45 s), and a final extension at 10-min extension step
at 72 °C. The PCR products were checked on 1.5% agar-
ose gel. Amplified PCR products were digested with re-
striction enzyme overnight. The digestion products were
electrophoresed on agarose gel and visualized by staining
with ethidium bromide. Primers and restriction enzymes
used are reported in the Additional file 1: Table S1. To
assess reproducibility, 10% of the samples were doubly
genotyped. Negative controls were also added to each
96-well plate. No discordance was detected between the
replicated samples, and reproducibility was 98.9%.

Genetic ancestry estimation
Individual admixture proportions were available for 337
out of the 738 participants with normal weight, and for
235 of 267 subjects in the overweight group. For these
individuals, European, Amerindian, and African contri-
butions were estimated with the program ADMIXMAP
v 3.2 [29], using a set of 40 ancestry informative markers
(AIMs) broadly distributed across the genome and ac-
cording to their significant differences in allele frequen-
cies among two populations. These AIMs have been
described previously to accurately estimate ancestry in
Latin American populations [30] (Additional file 1: Table
S2).

Statistical analysis
A descriptive analysis was performed on the perinatal
history and the socioeconomic, health, anthropomet-
ric, and genetic variables. The comparison of the vari-
ables among the groups according to nutritional
status with the Pearson X2 and Pearson correlation
was made; the Student t tests were made for quanti-
tative variables. For the allele and genotype frequen-
cies, the Hardy–Weinberg equilibrium and the
associations of the variant phenotypes, PLINK v1.07
[31] were used. Logistic regression analysis was per-
formed to look for associations of polymorphisms
with nutritional status (normal weight and overweight
groups) using the following models: additive (major
allele homozygotes vs. heterozygotes vs. minor allele
homozygotes), dominant (major allele homozygotes
vs. heterozygotes + minor allele homozygotes), and re-
cessive (major allele homozygotes + heterozygotes vs.
minor allele homozygotes). The best model was
chosen according to the Akaike information criterion.
Logistic regression was employed to estimate the odds
ratio (OR) and its confidence interval (CI) of 95%.
The association of genotype with BMI, WC, and per-
centage of BF were evaluated using linear regression;
variables with non-normal distributions were log-
transformed before analysis. For the anthropometric
measurements that were associated to more than two
associated variants, an estimation of the individual
genetic risk score (GRS) was generated, using the risk
alleles. We quantified the unweighted genetic risk
score to assess the combined effects of the variants
by summing the number of risk alleles; each individ-
ual might have 0, 1, or 2 risk alleles in each of the
variants. The weighted GRS was calculated by



Table 1 Characteristics of the study population, stratified
according to BMI

Variable BMI
<p 85.0th
(%), n = 809

BMI
≥p 85.0th
(%), n = 272

p value

Socioeconomic statusa

Low 43.3 39.3 0.082

Medium 37.8 36.4

High 18.9 24.3

Maternal education, yeara

0–6 15.3 7.7 0.008

+6–12 47.4 49.8

+12 37.3 42.4

Paternal education, yeara

0–6 14.8 10.6 0.023

+6–12 47.2 44.1

+12 38.1 45.3

Pubertal maturationa

Prepubertal 18.2 18.4 0.155

Pubertal 26.6 33.8

Postpubertal 55.3 47.8

Family historyb

Obesity 34.4 60.1 <0.001

Type 2 diabetes 55.8 62.0 0.073

Gestational diabetes 2.7 2.6 0.897

Hypertension 76.0 83.4 0.011

Dyslipidemia 59.5 69.7 0.003

Birth weight, (g)a

<2500 9.2 6.3 0.056

≥2500–4000 85.7 86.1

>4000 5.1 7.5

Maternal breastfeedingb 93.8 90.4 0.057

Duration of breastfeeding, (months)a

0–1 6.2 9.7 0.048

>1–3 21.4 22.8

>3–6 21.3 21.7

>6 51.1 45.7

Mean ± SD

Anthropometryc

Weight, kg 47.3 (11.0) 59.8 (15.0) <0.001

BMI, kg/m2 19.0 (2.39) 24.4 (3.49) <0.001

BF% 22,3 (7.8) 32.2 (8.11) <0.001

Waist circumference, (cm) 65,0 (5.8) 76.2 (8.3) <0.001

Data is shown as percentage (%) or average ± standard deviation
The significant p values (p < 0.05) are given in bold
BMI body mass index, BF% body fat percentage
aSpearman correlation
bPearson’s chi-square
cStudent t test
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multiplying the number of risk alleles at each locus
(0, 1, 2) by the variants’ β coefficient from the pre-
dictive model and then summing the product. Effects
of covariables (gender, age, pubertal maturation, and
BMI) were controlled, as well as the interaction
between the genetic variants and the social stratum,
maternal education year, birth weight, and maternal
breastfeeding. In addition to the previous analysis, we
conducted logistic analyses for the subset of the sam-
ples for which information ancestry was accessible.
The objective of these analyses was to determine if
the possible association of the polymorphism with nu-
tritional status (normal weight and overweight groups)
or adiposity measurement could be driven by popula-
tion stratification. Controlling for two out of three
admixture estimates avoided collinearity in the model,
since the three ancestry components sum up to 1.
Multiple test correction was done via permutation

tests; we performed 10,000 permutations to determine
empirical significance, which was considered for a value
of p < 0.05.

Results
Perinatal history and socioeconomic, health, and
anthropometric conditions of the young people
Of the total of 1081 participants, 581 (52.7%) were fe-
males; the mean age was 14.2 ± 2.4 years. The prevalence
of excess weight (percentile ≥85.0th) was 25.1% (272); of
these, 13.7% (149) were overweight and 11.3% (123) had
obesity (BMI percentile >95.0th).
No significant differences were found between the so-

cioeconomic stratum and birth weight with the
nutritional status; however, excess weight was signifi-
cantly greater in young people with more-educated
parents (p < 0.023), in those who had a family history of
hypertension (p = 0.011), dyslipidemia (p = 0.003), and
obesity (p = 0.00) and those who presented a minor dur-
ation of breastfeeding (p = 0.048) (see Table 1).
Characteristics by gender are shown in Additional file 1:
Table S3. There were no significant differences in socio-
economic status, parent education, family history of dis-
eases, perinatal history, and BMI. The percentage of
individuals who reported prepubertal maturation was
significantly higher in men than in women (p = 0.011).
In contrast, waist circumference and BF% was signifi-
cantly higher in women than in men (p < 0.001 for both).
A histogram of anthropometric variables, stratified by
gender, is shown in Additional file 1: Figure S1.

Association between excess weight and adiposity
measurements with genetic variants
The genetic analysis considered those subjects unrelated,
leaving a total of 1005 participants. Genotype distribu-
tions did not deviate from the Hardy–Weinberg
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expectations. An allelic frequency above 24% was found
for the low allele frequency in all variants evaluated,
except for UCP3, which was 12%. The sample was di-
vided into two groups: cases with excess weight, with
BMI p ≥85.0th (n = 267) and normal-weight controls
with BMI p <85.0th (n = 738). A logistic regression ana-
lysis was done for each one of the 10 variants under the
additive, dominant, and recessive models. The minor
allele additive model showed that rs699 in AGT was
Table 2 Association between 10 selected genetic variants and the r
18 years

Part A

Region Genetic variant GENE A2/A1 TEST OR* SE 95

1q42.21 rs699 AGT C/T ADD 1.25 0.108 1.

DOM 1.36 0.156 1.

REC 1.29 0.205 0.

2q37.3 rs3842570 CAPN10 IND/DEL ADD 0.90 0.104 0.

DOM 0.86 0.156 0.

REC 0.87 0.189 0.

8p21.3 rs285 LPL C/T ADD 1.11 0.102 0.

DOM 1.33 0.169 0.

REC 0.10 0.171 0.

9q31.1 rs2230806 ABCA1 G/A ADD 1.11 0.109 0.

DOM 1.31 0.154 0.

REC 0.88 0.222 0.

10q25.2 rs7903146 TCF7L2 C/T ADD 0.99 0.121 0.

DOM 1.04 0.149 0.

REC 0.81 0.322 0.

11q13.4 rs1800849 UCP3 C/T ADD 0.96 0.165 0.

DOM 0.95 0.178 0.

REC 1.07 0.6915 0.

13q34 rs1805097 IRS2 G/A ADD 0.77 0.1123 0.

DOM 0.67 0.1502 0.

REC 0.85 0.2253 0.

16q12.2 rs17817449 FTO T/G ADD 1.17 0.1133 0.

DOM 1.17 0.1478 0.

REC 1.36 0.2527 0.

16q13 rs708272 CETP C/T ADD 0.92 0.1107 0.

DOM 0.83 0.1514 0.

REC 1.06 0.2168 0.

17q23.3 rs4340 ACE IN/DEL ADD 0.95 0.1029 0.

DOM 0.98 0.1686 0.

REC 0.90 0.1708 0.

The ORs are based on the major allele homozygotes as reference. The significant p
A2 major allele, A1 minor allele, ADD additive (major allele homozygotes vs. heteroz
homozygotes vs. heterozygotes +minor allele homozygotes), REC recessive (major a
OR odds ratio, CI confidence interval
*Adjusted for age, gender, and pubertal maturation
†Adjusted for age, gender, pubertal maturation, and individual ancestry proportions
significantly associated with an increase in the risk of
excess weight, whereas rs1805097 in IRS2 was
significantly associated with normal weight. The associ-
ation remained significant after adjusting for age, gender,
and pubertal maturation (see Table 2). The AGT-rs699
(additive model p = 0.034, OR = 1.25, 95% CI = 1.01–
1.54), the IRS2-rs1805097 (additive model p = 0.022, OR
= 0.77 95% CI = 0.62–0.96). An identical association was
also observed for the dominant model (Table 2, part A).
isk of excess weight (p ≥85.0th) in young people aged 10 to

Part B

% CI p value OR† SE 95% CI p value Risk allele

011, 1.545 0.0394 1.31 0.137 1.005, 1.720 0.0458 T

005, 1.855 0.0449 1.46 0.183 1.021, 2.097 0.0383

865, 1.929 0.2108 1.42 0.248 0.873, 2.313 0.1575

730, 1.099 0.2950 0.86 0.126 0.673, 1.108 0.2489 –

632, 1.165 0.3324 0.76 0.190 0.530, 1.117 0.1680

601, 1.260 0.4612 0.87 0.221 0.564, 1.345 0.5333

910, 1.356 0.3009 1.19 0.124 0.934, 1.521 0.1572 –

955, 1.854 0.0939 1.58 0.199 1.071, 2.341 0.0212

712, 1.394 0.9822 1.021 0.205 0.682, 1.526 0.9213

899, 1.379 0.3308 1.03 0.139 0.788, 1.362 0.7985 –

968, 1.770 0.0756 1.25 0.181 0.882, 1.798 0.2037

573, 1.369 0.5836 0.91 0.256 0.554, 1.515 0.7348

783, 1.260 0.9603 0.76 0.187 0.530, 1.106 0.1554 –

775, 1.390 0.8100 0.87 0.175 0.618, 1.228 0.4318

432, 1.523 0.5140 0.60 0.367 0.293, 1.242 0.1706

697, 1.332 0.8220 1.24 0.419 0.545, 2.826 0.6061 –

672, 1.351 0.7911 1.10 0.210 0.729, 1.660 0.6494

276, 4.159 0.9196 1.51 0.837 0.293, 7.820 0.6202

622, 0.966 0.0222 0.95 0.144 0.718, 1.265 0.7405 G

502, 0.905 0.0090 0.71 0.176 0.506, 1.012 0.0582

546, 1.321 0.4691 1.12 0.271 0.657, 1.909 0.6757

933, 1.455 0.1701 1.14 0.153 0.849, 1.548 0.3702 –

875, 1.561 0.2887 1.07 0.173 0.761, 1.503 0.6968

832, 2.239 0.2186 1.30 0.294 0.732, 2.322 0.3677

741, 1.144 0.4594 0.94 0.135 0.727, 1.239 0.7021 –

619, 1.120 0.2306 0.82 0.178 0.584, 1.174 0.2899

692, 1.618 0.7945 1.01 0.252 0.617, 1.659 0.0622

781, 1.169 0.6571 0.96 0.120 0.762, 1.222 0.7669 –

706, 1.367 0.9270 1.00 0.197 0.681, 1.475 0.9902

643, 1.257 0.5349 0.90 0.199 0.612, 1.339 0.6208

values (p < 0.05) are given in bold type
ygotes vs. minor allele homozygotes), DOM dominant (major allele
llele homozygotes + heterozygotes vs. minor allele homozygotes),
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Focusing on the subset of the samples with information
on ancestry, we observed that the ancestral composition
is on average 66.3 ± 5.8 (%) European with a range in in-
dividuals of 41.0–80.0%; 19.5 ± 4.2 (%) Amerindian with
a range of 10.0–35.0%; and 14.2 ± 4.9 (%) African with a
range of 3.8–57.9%. Participants did not show any sig-
nificant differences in ancestry according to nutritional
status (normal weight vs. overweight) (Table 3). The
odds ratios for the logistic regression analysis, adjusting
ancestry as a covariate, were similar to those observed
for the total sample, although the p values were weaker
because of the smaller sample size (Table 2, part B). In
addition, linear regression analyses of the adiposity mea-
sures with the 10 variants are shown in Table 4. The
AGT-rs699 and IRS2-rs1805097 variants presented an
association with BMI, FB%, and WC; UCP3-rs1800849
and FTO-rs17817449 variants presented an association
with BMI and WC. After adjustment for age, gender,
and pubertal maturation (for FB% and WC adjusted for
BMI), the AGT-rs699 and FTO rs17817449 variants
showed positive associations with BMI, and the IRS
rs1805097 variant showed a negative association with
BMI (p = 0.036, p = 0.031, and p = 0.043 respectively),
while the UCP3 rs1800849 showed a negative associ-
ation with WC (p = 0.001) (Table 4). We did a similar
analysis on the subset of the sample with information on
ancestry. Our results showed that after adjusting for an-
cestry, associations between IRS2-rs1805097 and FTO-
rs17817449 on IMC were not confirmed (Additional file
1: Table S4). However, the association between AGT-
rs699 on BMI and UCP3-rs1800849 on WC was still ob-
served after adjusting for ancestry. However, this might
be due to the effect of sample size, because IRS2-
rs1805097 retained its association in logistic regression
analysis after adjusting for ancestry.
A GRS was generated for every individual by counting

the number of alleles associated with excess weight
(AGT-rs699 T and IRS2-rs1805097 G; range 0–4,
(GRS-2)) and BMI measurement (AGT-rs699 T, IRS2-
rs1805097 G and FTO-rs17817449 G; range 0–6,
(GRS-3)). The association of the GRS-2 and the risk
of excess weight showed that each additional effect
allele was associated with a 1.26-fold increased odds
Table 3 Mean (standard deviation) of genetic ancestry
percentages for nutritional status

BMI p <85.0th
n = 337

BMI p ≥85.0th
n = 235

p value

European 66.2 (5.6) 66.7 (6.3) 0.327

Amerindian 19.6 (4.3) 19.3 (4.2) 0.439

African 14.4 (4.7) 14.1 (5.4) 0.552

Mean and standard deviation values are obtained from inferred individual
genetic ancestry components (measured in percentage) for the subset of the
samples. Student t test
of excess weight (95% CI 1.08–1.47). The GRS-3 was
normally distributed. 16.9% of the individuals carried
one or fewer risk alleles, and 5% carried ≥6 (Fig. 1).
The GRS-3, which examines the cumulative effects of
the three SNPs, was significantly associated with BMI
(p = 0.004, effect size 0.034 log-transformed/allele 95%
CI 0.006–0.033).

Interaction between genetic variants and socioeconomic
and perinatal variables
We did not find any statistically significant association
among the rs3842570, rs285, rs2230806, rs7903146,
rs708272, and rs4340 with BMI and adiposity measure-
ments in this population. We explored the possible
interaction of the socioeconomic status and perinatal
history for the 10 variants evaluated and the indicators
related to excess weight. This study found no evidence
of interaction with these variables. An additional text file
shows this in more detail (Additional file 1: Table S5).

Discussion
The clustering of hypertension, dyslipidemia, and insulin
resistance with obesity suggests the presence of common
factors influenced by both environmental and genetic
factors. Previous studies between body fat and common
cardiovascular disease risk factors have indicated the
presence of some genetic pleiotropism [32]. Additionally,
epidemiological studies and clinical settings have estab-
lished that outcomes often differ between ethnicity, and
are modulated by social and environmental conditions.
In this study we explore the association of 10 metabolic
syndrome candidate genes with excess weight and adi-
posity and evaluate the effect that socioeconomic and
perinatal factors could have on these associations in a
group of young people.
Of the 10 variants evaluated, associations with excess

weight, or its quantitative measurements, were found for
four polymorphisms. A missense SNP in AGT (rs699;
M235T) was associated with excess weight and may be a
causal candidate variant; AGT II is an important regula-
tor of blood pressure; carriers of the threonine variant
have higher values in blood pressure [33], which leads to
an increased risk associated with hypertension disorders.
Skov and coworkers argued that regulating the renin-
angiotensin-aldosterone system (RAAS) was involved in
metabolic processes and could explain the origin and
complications of some disorders such as MetS [34]. The
RAAS components are involved in complex ways in the
development of obesity by conditions of satiety, energy
expenditure, and growth and differentiation of adipo-
cytes [35]. AGT is also highly expressed in white adipose
tissue, second to the liver in terms of mRNA levels; one
study showed that overexpression of AGT in adipocytes
increased weight in murine models [36]. Several



Table 4 Association with anthropometric measures at 10 selected genetic variants in young people aged 10 to 18 years

Log BMI (kg/m2)a Log BF %b Log waist circumference (cm)b

SNP MAF TEST ß coefficient SE 95% CI p value ß coefficient SE 95% CI p value ß coefficient SE 95% CI p value

rs699 T ADD 0.007 0.003 0.000,
0.013

0.036 0.005 0.004 −0.003,
0.013

0.210 0.0008 0.000 −0.001,
0.002

0.365

rs3842570 D ADD −0.000 0.003 −0.006,
0.006

0.973 0.003 0.004 −0.005,
0.011

0.440 −0.0004 0.000 −0.002,
0.001

0.628

rs285 T ADD 0.002 0.003 −0.003,
0.008

0.406 −0.002 0.004 −0.010,
0.005

0.577 −0.0000 0.000 −0.001,
0.001

0.994

rs2230806 A ADD 0.003 0.003 −0.003,
0.010

0.286 −0.002 0.004 −0.010,
0.006

0.686 −0.0009 0.001 −0.002,
0.000

0.319

rs7903146 T ADD −0.001 0.003 −0.008,
0.006

0.851 0.002 0.005 −0.007,
0.011

0.653 −0.0003 0.001 −0.002,
0.001

0.772

rs1800849 T ADD −0.008 0.005 −0.017,
0.001

0.104 −0.005 0.006 −0.017,
0.006

0.373 −0.0045 0.001 −0.007,
−0.001

0.001

rs1805097 A ADD −0.006 0.003 −0.013,
−0.000

0.043 −0.005 0.004 −0.013,
0.003

0.200 0.0000 0.000 −0.001,
0.002

0.951

rs17817449 G ADD 0.007 0.003 0.001,
0.014

0.031 −0.000 0.004 −0.009,
0.008

0.907 0.0011 0.001 −0.000,
0.003

0.287

rs708272 T ADD −0.013 0.003 −0.008,
0.005

0.672 −0.004 0.004 −0.012,
0.004

0.351 −0.0007 0.001 −0.002,
0.001

0.434

rs4340 D ADD −0.000 0.003 −0.006,
0.006

0.954 −0.001 0.004 −0.008,
0.007

0.877 −0.0009 0.000 −0.002,
0.000

0.316

GRS-3 ADD 0.020 0.007 0.006,
0.033

0.004 – – – – – – – –

The significant p values (p < 0.05) are given in bold
MAF minor allele frequency calculated using the data from all the subjects in the analysis, ADD additive, CI confidence interval, GRS genetic risk score
aAdjusted for age, sex, and pubertal maturation
bAdjusted for age, sex, pubertal maturation, and BMI

Fig. 1 Distribution of the GRS-3 and cumulative effects of the alleles from the three BMI susceptibility variants on log-transformed BMI value
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observations suggested a role of AGT in adipose tissue
development since this tissue and isolated adipocytes
contain RAAS components, leading to AngII [37]. The
expression and secretion of AGT increases with differen-
tiation and is higher in adipocytes compared to preadi-
pocytes [38].
We showed that the missense SNP rs1805097 in IRS2

was associated with protection for excess weight, an as-
sociation not previously described. This SNP leads to a
Gly1057Asp. Previous studies showed the role of IRS-2
in the differentiation of preadipocytes from adipocytes
through the upregulation of the specific transcriptional
factors of expression, such as PPARγ and C/EBP [39].
The variant is associated with diabetes in the adult
population. However, studies from Italy and Pima In-
dians showed that this variant contributed to diabetes
risk in obese individuals, but lowered risk for type 2 dia-
betes in normal-weight individuals, suggesting a possible
interaction between gene and the environment [40, 41].
Kilpeläinen et al. [42] reported a locus near IRS1 which
was associated with a decrease in BF but with an im-
paired metabolic profile, including increased insulin re-
sistance, dyslipidemia, risk of diabetes and coronary
artery disease, and decreased adiponectin levels.
Different polymorphisms in the FTO-gene intron 1

have been associated with obesity or with BMI in
genomic scans as well as in models of simple associ-
ation in different populations [43, 44]. Recently, it
was reported that the intron 1 polymorphisms func-
tion in regulatory elements of the expression of the
IRX3 gene. IRX3 encodes a transcription factor highly
expressed in the brain consistent with the role in
regulating energy metabolism and feeding behavior
[45]. As in other studies, we found an association
with BMI in which the mean BMI was increased
0.33 kg/m2 per allele G [46].
UCP3 participates in thermogenesis; a decrease in the

expression or function of this protein may reduce energy
expenditure and increase its storage as fat. A promoter
region variant −55 CT (rs1800849) is situated 6 bp from
the TATA box and 4 bp from a DR1 site, which is a part
of a retinoic acid response element [47]. The functions
described for UCP3 and the results of variant association
have been reported for children and adults in Caucasian
and Korean populations [6, 48]. Liu et al. [6] found a sta-
tistically significant association between the carriers of
the T allele and a lower BMI. Our study did not show an
association with BMI, but it did show a statistically sig-
nificant difference with a lower waist circumference.
With the exception of rs17817449, no association of

these variants with BMI or waist circumference was
found in the Genetic Investigation of ANthropometric
Traits (GIANT) Consortium [49]. A steady genetic effect
across population means that genetic variants reflect a
common, final biological effect on individuals. However,
associations may be altered by age, environmental expo-
sures, interaction with other genes, effects of the differ-
ences in the allele frequencies, and the linkage
disequilibrium patterns in admixed populations.
Evidence shows an interaction among the variants of

obesity with environmental factors, as has been found
for FTO, in which the lack of physical activity and less
education potentiate the effect of its variants in the in-
crease of obesity [18, 23]. Similarly, a variant of the
APOA2 gene increases the association with obesity in
those consuming high levels of saturated fatty acids [50].
Another study reported the influence of maternal educa-
tion on the effect of a variant of the neuromedin B gene
on obesity [19]. Based on these studies, we evaluated en-
vironments that conducive to possible interaction, such
as social status, education, history of breastfeeding, and
birth weight. However, no associations between the 10
variants and these factors were found, possibly due to
sample size.
However, significant association was found between

the education of parents with excess weight in this study
similar to that observed in Bangladesh and India, which
reported that higher levels of education and greater in-
come were associated with the increase in the rates of
obesity [16, 17]. Although not monitored here, families
with higher levels of education and better economic in-
comes may consume higher levels of fast foods and,
coupled with the availability of video games, creates
sedentary environments that favor the development of
obesity.
Birth weight and length are considered to be high-risk

variables for excess weight [51]. The study by Loaiza
et al. [52] in Chilean children, reported a direct relation-
ship between high birth weight and the risk of obesity in
school age. Evidence exists on the effect of the fetal en-
vironment and the epigenetic remodeling in fetal genes
that regulate or participate in the energy metabolism
that will be expressed in obesogenic environments [53].
In this study, birth weight showed a borderline signifi-
cance (p = 0.056).
Family history of obesity meets both genetic risk

factors as well as environmental or cultural factors.
Heritability estimates for obesity range between 50 and
80% [54] based on the concordance in monozygotic
compared to dizygotic twins.
Several limitations of this study must be considered:

the sample size may be relatively small for a predict-
ive clinical-genomic model. In addition, genotype-
environment interactions would require a larger
population to confirm these results. Furthermore, this
study only considered the association of a single vari-
ant in each gene with BMI, a widely used but impre-
cise indicator of adiposity. X-ray dual absorptiometry
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produces more precise data on adiposity but because
of cost its use is limited. A wide variety of other en-
vironmental factors and social determinants were not
explored in this study which could affect the
associations.
Despite these limitations, this study contributes to

the literature on understanding childhood obesity,
showing associations between the family socioeconomic
level and anthropometric, health, and genetic measure-
ments. Although the study reported here, like most
association studies, focused on single SNP associations,
excess weight is a complex trait produced by combina-
tions of many gene-gene and gene-environment inter-
actions. The pathway for the translation and integration
of genomics from the laboratory into everyday medi-
cine remain largely unfulfilled, and the clinical utility
has been debated recently [55, 56]. Genetic studies
should be considered as a first step in the understand-
ing of the molecular basis of traits or complex diseases
but requires a more comprehensive view integrating
phenotypic and genotypic factors with environmental
and metabolic factors. We believe that the results
provide further insights regarding the potential modu-
lating effect of certain genotypes to weight reduction
treatments.

Conclusions
We found that the SNPs of AGT rs699 and IRS2
rs1805097 showed significant association with over-
weight (BMI p >85). The variants rs699, rs1805097, and
rs17817449 were significantly associated with BMI and
the variant of UCP3 rs1800849, with waist circumfer-
ence. In addition, we found that the level of parent
education, family histories of obesity, hypertension,
dyslipidemia, and a minor duration of breastfeeding
contribute to excess weight; however, no effect of these
socioeconomic and perinatal factors was found on
genetic associations.
Although obesity is a complex disease, the implemen-

tation of personalized treatments using genotypes could
be tested in this condition if our findings are confirmed.
Future research should explore, in a larger sample size,

the interaction of other environmental factors such as
lifestyles and diet habits, in addition to a larger number
of polymorphisms in each gene. This might help explain
the relationship between the genotype and phenotype,
which may aid clinicians for developing treatments or
predicting outcomes.
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