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Abstract

Nowadays, the accepted cosmological model is the so called Λ-Cold

Dark Matter (ΛCDM), which has been proposed as a model that fits the

observations while allows to explain them based on the basis of the therory

of General Relativiy. In such model, the Universe is considered to be

homogeneous, isotropic and to be composed by diverse components as the

baryonic matter, dark matter, radiation and dark energy. The most abundant

components are the dark matter and the dark energy, from which the dark

energy is the current dominant component.

The Cosmic Microwave Background (CMB) is a microwave radiation field

that permeates the Universe. In principle, this radiation should be homoge-

neous, but due to several physical processes, the CMB photons underwent

perturbations that induced the formation of several anisotropies. The study

of the CMB anisotropies may lead to evidence of the existence of the dark

energy, which is associated with the current accelerated expansion of the

Universe. In that context, one of those CMB anisotropies is the Integrated

Sachs-Wolfe (ISW) effect. The ISW is an effect that the CMB photons

experience when they pass through non-stationary overdense or underdense

regions, changing their wavelength and energies. Such perturbation in the

CMB is associated to the evolution in time of the gravitational potential wells

of dark matter structures that form the Large Scale Structures (LSS) and host

the galaxies.

The aim of this work is to study the late ISW effect in a cosmological simu-

lation, in order to obtain the maps of the anisotropies due to a late ISW effect

and study the relation of this temperature fluctuations with the evolution of

the gravitational potential wells and the matter density they contain. This is

a preliminar study of the ISW effect only in cosmological N -body simula-

tions. The results of this work will allow us to perform a more detailed and



extensive study of this effect with both, cosmological simulations and data of
galaxy redshift surveys in a future step of the project. What is expected, after
a comparison between those exhaustive studies with synthetic and real data,
is to detect the signal associated with Integrated Sachs-Wolfe effect, and with
that, give a possible evidence of the presence of the dark energy.

The numerical and computational methods used to study the late Integrated
Sachs-Wolfe effect in this work are based in the Fourier transform of different
fields, as the density field, the gravitational potential field and its correspond-
ing time derivative, and the interpolation and numerical integration of the
time derivative of the gravitational potential Φ̇(x). The results obtained in this
work correspond to the late ISW effect in a simulation box of 400h−1Mpc.
The methods used to calculate the different fields mentioned before and the
maps obtained after the data processing are shown, as well as the maps of the
late ISW anisotropy in the simulation box. An interpretation of the results
is given and supported with an analysis of the structures of the simulation.
Finally, the results are tested through three methods: comparison with linear
regime, estimation of the temperature fluctuations along the integration axis
and numerical convergence. From those test, it is possible to conclude that
the ISW maps obtained with the exact solution and with the linear approx-
imantion show a very good coherence and the linear approximation shows
a good behavior in its regime. The numerical convergence test shows that
independently of the number of integration steps and of the resolution used,
our results present a good convergence. When we compare the temperature
fluctuations along the integration axis, our results also shows a good corre-
spondence and behavior with both, the linear approximation values and the
different integration steps. Even, when comparing the behavior of the tem-
perature fluctuations along the integration axis with the results obtained in the
works of other authors, we obtain similar results. All those tests show a very
good processing of the data and that our results are coherent.
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“So that when I look up at the night
sky and I know that yes, we are part
of this Universe, we are in this Uni-
verse, but perhaps more important
than both of those facts is that the
Universe is in us. When I reflect on
that fact [...] I feel big, because my
atoms came from those stars.”

Neil deGrasse Tyson

CHAPTER

1
Theoretical Framework

Cosmology is the study of the origin and evolution of the Universe. It allows us

to understand how is the dynamics of the Universe and the ways it would evolve in the

different realizations we can create theoretically, given some parameters and assumptions.

But according to the observations, the most accepted model is the ΛCDM model, in which

the Universe is an expanding entity, which is homogeneous and isotropic and have a flat

geometry. In this model, the Universe is composed by baryonic matter, which is the

ordinary matter that composes planets, stars and even live; the radiation, which is the main

component used in astronomy and astrophysics to study and understand the Universe; the

dark matter and the dark energy. Those last components are almost completely unknown

for us, but we can explain its role in the evolution of the Universe.

Dark matter only interacts with baryonic matter by the gravitational force; as it doesn’t

interact in a electromagnetic way, we can not observe it, but some observations as the

rotation curves of galaxies tells us that it should be some massive component that allows

the galaxies and galaxy clusters to exist and maintain its form.

Dark energy is the most unknown component of all, but observationally, we can

infer that the cosmological constant, which is related to this dark energy, dominates the

Universe and produces a negative pressure, balancing the gravitational push of matter

and allowing the Universe to expand at an accelerated rate.

In this first chapter, we are going to study the background of cosmology and some

complex problems as the formation of structures and the study of the Cosmic Microwave

1



1. THEORETICAL FRAMEWORK

Background (CMB). Both problems allow us to understand the origin and evolution of
the Universe.

1.1 Cosmological Context

1.1.1 Cosmological Principle and Hubble’s Law
The cosmological principle states that the Universe is isotropic and homogeneous.
The homogeneity means a translational symmetry, or that the Universe has an uniform
composition, while the isotropy is related to a rotational symmetry, it has the same
properties in all directions.

This principle also states that the Universe is in an accelerated expansion, which is
governed by the Hubble’s law. This law allow us to find the recessional velocity of an
object in the sky respect to the Earth. Taking the Earth at the origin, according to the
Hubble’s law, the recessional velocities respect to the Earth of two galaxies A and B with
positions rA and rB, respectively, will be:

vA = H0rA (1.1)

vB = H0rB (1.2)

WhereH0 is known as the Hubble’s constant, vA and vB are the velocities of the galax-
ies A and B, respectively. The recessional velocity of galaxy B as seen by an observer in
galaxy A is:

vA − vB = H0rA −H0rB = H0(rA − rB) (1.3)

The observer in A sees all of the other galaxies in the Universe moving away with
recessional velocities described by the same Hubble’s law as on Earth. Actually, H0 is a
function of time, H = H(t), which at the present time t0 has the value H(t0) = H0 [5].

1.1.2 Robertson-Walker Metric
Now, assuming that Einstein’s general relativity holds in this isotropic, homogeneous
Universe, the dynamics of the space-time is described by the Einstein’s field equations
[2]:

2



1.1 Cosmological Context

Rµν −
1

2
gµν + Λgµν = κTµν (1.4)

Where:

• Rµν is the Riemann curvature tensor and R is its respective curvature scalar.

• gµν is the metric of the homogeneous and isotropic Universe.

• Tµν is the stress-energy-momentum tensor.

• κ is the Einstein’s gravitational constant: κ = 8πG/c4.

In an homogeneous and isotropic Universe, although the curvature of space may

change with time, the curvature has the same value everywhere at a given time since the

Big-Bang [5]. A metric that can describe this kind of Universe is the Robertson-Walker

(RW) metric, given by:

(ds)2 = gµνdx
µdxν

= −c2(dt)2 + a2(t)

{
(dx)2

1− kx2
+ x2

[
(dθ)2 + sin2 (θ)(dφ)2

]}
(1.5)

This metric determines the space-time interval between 2 events in the isotropic, ho-

mogeneous Universe. Here:

• x is the comoving coordinate that does not change with the scale of the Universe and

are coordinates respect to a frame that moves with the expansion of the Universe.

• a(t) is the scale factor of the Universe that characterizes the relative size of the

Universe.

• k is the space-time curvature.

At the present time t0, the value of the scale factor can be chosen to be a(t0) = 1.

The time t is a universal time that measures the time that has elapsed since the Big-Bang.

It is not an absolute time, but merely reflects a choice of how clocks of distant observers

are to be synchronized [5].

For an expanding Universe, the value of the scale factor can tell us if we are looking at

the future (a > 1) or the at past (a < 1). As the comoving coordinates do not change with

3



1. THEORETICAL FRAMEWORK

the Universe scale, it appears a physical coordinate r which is the observed coordinate,

and is related to the comoving coordinate x by means of [2]:

r = a(t)x (1.6)

Physical coordinates r change with the expansion of the Universe, characterized by

the scale factor a(t). The expansion of the Universe can be seen with an example as in

Figure 1.1. From this figure, the Universe can be seen as an expanding balloon, while

the galaxies in the Universe are drawn in the surface of the balloon. The position of

each galaxy is the same when the Universe expands, but each galaxy separates from the

others with an accelerated rate. Seeing in comoving coordinates, it does not matter the

expansion, because the distance between each galaxy is the same.

Figure 1.1: Sketch of the expansion of the Universe. This expansion can be seen as the
galaxies are drawn in the surface of an expanding balloon. The position of the galaxies
will be the same, independent of the Universe’s expansion, but the distance between them
will be larger as the Universe expands. Taken from http://scienceblogs.com/

startswithabang/.

We can also take into account the behavior of the scale factor a(t) according

to the curvature k. In the RW metric Equation 1.5, the curvature of the Universe

allows to model the Universe as an open Universe (k < 0) a flat Universe (k = 0)

and a close Universe (k > 0). An open Universe will expand forever, while a close

4
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1.1 Cosmological Context

Universe will have a collapse at the end of its evolution. The scale factor charater-
izes the expansion of the Universe, we can see this behavior in Figure 1.2. actually,
observations show us an opposite effect than the shown in Figure 1.2, the Universe is
expanding at an accelerated rate, but it is because the dynamics of the Universe is given
by the interaction of the components inside it, and not by its geometry, as we will see later.

Figure 1.2: Evolution of the scale factor as a function of time for universes with differ-
ent curvatures. This figure shows the evolution of the scale factor for different geome-
tries: An open Universe (k < 0) will expand forever, while a close Universe will be-
gin to expand, an after some time will collapse. In the case of a flat Universe (k =

0), the Universe will expand forever, but the expansion rate will decrease and the ex-
pansion will be slow. Taken from http://physicsmadeeasy.wordpress.com/

physics-made-easy/cosmology-ii/.

1.1.3 Friedmann Equations
When solving the Einstein’s field equations for an isotropic, homogeneous Universe, i.e.,
described by the RW metric, we obtain the Friedmann equations; those ordinary differen-
tial equations lead to a description of the dynamical evolution for a non-static Universe,
characterized by the temporal change of the scale factor a(t), as follows:

(
ȧ

a

)2

=
8πGρ

3
− kc2

a2
+

Λc2

3
(1.7)

ä

a
= −4πG

3

(
ρ+

3P

c2
+

Λc2

3

)
(1.8)
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1. THEORETICAL FRAMEWORK

The Equation 1.7 is obtained from the temporal (time-line or 00) component of
the Einstein’s field equations, meanwhile Equation 1.8 is obtained from Equation 1.7
together with the trace of the Einstein’s field equations (Equation 1.4) (see, for example
http://en.wikipedia.org/wiki/Friedmann_equations).

Here ȧ = da/dt, and Λ is the cosmological constant. A non-zero cosmological con-
stant implies that space would be curved even in an empty Universe that is devoid of
matter. Also, the term ρc2 is the total mass-energy density, which is the superposition of
the density of matter and radiation: ρ = ρm + ρr. A general expression for the density
can be obtained when supposing a mass M enclosed in a spherical volume V of radius r
in physical coordinates; that means V ∝ r3 ∝ a3x3. Then, the density in this spherical
volume is given by:

ρ =
3M

4πr3
=

3M

4πx3a3
(1.9)

A relation between the density measured in physical coordinates ρ and the density
measured in comoving coordinates ρcomoving is given by:

ρ

ρcomoving
=

ρ

ρ0

= a−3 (1.10)

Which is a relation that holds even between the density in physical coordinates ρ and
the density measured at the present time ρ0 [5]. As a particular case, assuming that Λ = 0,
and that the Universe is filled with matter but not with radiation, Equation 1.10 holds in
this dust-filled Universe.

In comoving coordinates, density does not change because the volume of space
that contents a unit of mass do not vary in time, while in physical coordinates density
decreases because the mass inside a volume of space is the same, but the volume becomes
larger with time [2].

1.2 Dynamical Models of the Universe
The different dynamical models of the Universe allow us to understand the behavior of
the Universe given by the interaction of the different components of the Universe. We
can study simple models of only one component (as “dust” models, non-relativistic and
relativistic models) or more complex models with more than one component in which it
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1.2 Dynamical Models of the Universe

is more evident that the dynamical behavior of the Universe depends on the interaction

between the densities of those components.

1.2.1 Fluid Equation

By the firts law of thermodynamics, supposing the Universe as a closed system and its

total energy density is the sum of the energy densities of the whole components of the

Universe, one can find a fluid equation that relates the change of the density in time (or

with the scale factor) with the pressure and density of the Universe. As there is a 1-to-

1 relation between time t and scale factor a, the fluid equation could be writen in the

following ways:

a
dρ

da
+ 3

(
ρ+

P

c2

)
= 0 (1.11)

dρ

dt
+

3ȧ

a

(
ρ+

P

c2

)
= 0 (1.12)

In those equations, ρ is the total density of the Universe, P is the pressure due to the

components and c is the speed of light. We can use these equations to describe particular

models of the Universe, as in the next subsection.

1.2.2 Case 1. Non-Relativistic Fluid (Dust Model)

In this case, the velocity dispersion is too low and the pressure due to the movement of the

particles can be neglected. It is the same to assume that the kinetic energy of the particles

is lower than their rest energy: P << ρc2. In this model, only particles (no radiation) are

taken into account. Assuming massive, non-charged particles and without pressure, the

fluid equation becomes:

dρ

da
+

3ρ

a
= 0 (1.13)

With:
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ρ =
E

c2
=
nmc2

c2
; n ≡ Particle number density (1.14)

From Equation 1.13 and Equation 1.14 one can obtain the following equation:

n = n0a
−3 ⇒ ρ = ρ0a

−3 (1.15)

Which is the earlier Equation 1.10 that relates the matter density at any time with the
present value of the density. Then, the equation of state for non-relativistic particles is
P = 0.

1.2.3 Case 2. Non-relativistic “Hot” Fluid
Now, we consider an ideal gas with internal energy proportional to its temperature. Start-
ing from the equation of state for an ideal gas and the equipartition of energy:

P = nkBT (1.16)

ETotal = nmc2 +
3

2
nkBT (1.17)

We obtain a relation between temperature and the scale factor, as follows:

T = T0a
−2 (1.18)

This equation tell us that as the volume increases, but the energy remains constant,
then the energy density and the temperature decreases with time.

1.2.4 Case 3. Relativistic Fluid
With the help of the equation of state for a relativistic fluid and the fluid equation in terms
of the total energy density:

P =
1

3
ETotal ⇒

dETotal
da

+
4ETotal
a

= 0 (1.19)

8



1.2 Dynamical Models of the Universe

The total energy density is proportional to: ETotal ∝ a−4. Taking into account that the
total energy density is the sum of the energy densities of all the particles in the Universe:

ETotal =
∑
n

nhν ∝ a−4 (1.20)

Using Equation 1.15, we find that ν = ν0a
−1. This relation means that the observed

photon (with frequency ν0) is not the same as the emitted one (with frequency ν). This
photon will be shifted to a lower frequency. With this in mind, we can define the scale
factor as a function of a new parameter called redshift z, that is related to this shift in the
frequency of the photons:

z =
ν − ν0

ν0

=
ν

ν0

− 1 ⇒ z = a−1 − 1

a =
1

z + 1
(1.21)

As an example, if we see an object with redshift z = 3, this means that light we
observe from this object right now was emitted when the Universe had 1/4 of its present
size.

The redshift is this change in the frequency of the photons, from a higher emitted
frequency ν, to a lower observed frequency ν0. This means that the photon will lose
energy in its travel from the source to the observer. We can also talk about a blueshift,
that means that the emitted frequency ν of the photon will be lower than the observed
one ν0, meaning that the photon gained energy in its journey. Both kind of shifts in the
frequency are related to the Doppler effect, thus as we feel that the frequency of the siren
of an ambulance increases if the ambulance is coming to us from far, and then, when the
ambulance is going away from us its frequency decreases, we can talk about a Doppler
effect in the frequency of the electromagnetic waves, which are the two kind of shifts we
have talked before, redshift and blueshift.

The lost of energy measured when a photon undergoes a redshift is due to the expan-
sion of the Universe, and can be detected when a photon originated in a far source which
is moving away from the observer, by both reasons, the recessional velocity of the source
and by the expansion of the Universe, the wavelength of this photons will become larger

9
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(and the frequency will decrease) than the wavelenght of the photon when it was emitted

by the source. As we have said before, the frequency of the emitted photon is higher than

the frequency of the observed one.

If the photon undergoes a blueshift, this means that the source which emitted it is

moving toward the observer, and by this forward velocity, the wavelenght of the photon

will diminish (and its frequency will become higher) respect to the wavelenght of the

emitted photon. Then, the frequency of the emitted photon is lower than the frequency of

the observed one.

Figure 1.3 and Figure 1.4 show an sketch of what redshift and blueshift are, and how

an spectrum of a moving source will be seen in both cases.

Figure 1.3: Redshift and blueshift seen by two different observers. If the source is moving
away from the observer, this observer is going to see a redshifted photon, while the observer
which sees the source going toward it will see a blueshifted photon. Taken from http:

//alienspacesciencenews.wordpress.com/

1.2.5 General Equation of State

All the equations of state we have seen in the last sections could be summarized in only

one equation, as follows:

P = c2ωiρi (1.22)
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1.2 Dynamical Models of the Universe

Figure 1.4: An example of a spectrum of an object undergoing redshift or blueshift. The lines
of the spectrum will move to the red range of the electromagnetic spectrum if the photons
are redshifted, on the contrary the lines will move to the blue range. Taken from http:

//www.astrocappella.com/background/doppler_background.shtml.

Where ωi is a parameter associated with each one of the components of the Universe.

Some values for different components of the Universe are:

• ωi = ωm = 0: Non-collisional dust.

• ωi = ωr = 1/3: Relativistic particles and radiation.

• ωi = ωΛ = −1: Vacuum energy associated with Dark Energy.

• Other values of ωi are associated with different models of the Dark Energy.

The equation of state is the only way to modify the components in the Universe.

1.2.6 Case 4. Models with more than One Component

Remembering that Equation 1.15 describes the conservation of mass within an expanding

shell, but for a pressureless dust Universe, if we desire to take into account more than

one component of the Universe, we can generalize Equation 1.15 incorporating pressure-

producing components. For a dust Universe, the density is given by Equation 1.14, while

for relativistic particles such as neutrinos and photons, ρ is the equivalent mass density.

Imagine a Universe filled with fluid (dust, photons, and so on) of uniform density ρ,

pressure P and temperature T . Choosing an arbitrary point for the origin and with r

the radius of a comoving spherical surface centered on the origin. With the first law of

thermodynamics dU = dQ−dW applied to the fluid in the expanding shell and assuming

that the entire Universe is at the same temperature, so there can be no heat flow and the

11
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expansion of the Universe is adiabatic, then any change in the internal energy of the

Universe must be produced by the work done by the fuild [5]:

dU

dt
= −dW

dt
= −P dV

dt
; V =

4πr3

3
(1.23)

Then:

dU

dt
= −4π

3
P

dr3

dt
(1.24)

Defining the internal energy per unit volume u as u = 3U/(4πr3) and writing u in

terms of the equivalent mass density u = ρ/c2, we obtain:

d(r3ρ)

dt
= −P

c2

dr3

dt
(1.25)

But since the physical coordinates are related to the comoving ones by means of Equa-

tion 1.6, we find the fluid equation (Equation 1.12). To solve this differential equation,

we use the general equation of state (Equation 1.22). After substitution of Equation 1.22

in Equation 1.12, we find a Bernoulli differential equation of the form:

d(a3ρ)

dt
= −ωρda3

dt
(1.26)

With solution [5]:

a3(1+ω)ρ = ρ0 = constant (1.27)

Where ρ0 is the present value of mass density, or equivalent mass density. For a

pressureless dust ωm = 0 and we find Equation 1.15 again. Equation 1.27 shows us how

with the expansion of the Universe, each one of the densities of the different components

of the Universe change in a different way according to the parameter ωi, which means

that the behavior of each one of the components will be different along the expansion and

evolution of the Universe.
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1.3 Cosmological Parameters
Cosmological parameters allow to study the relations between the densities of the

components of the Universe and its change with the evolution and expansion of the

Universe, i. e., the dynamical evolution of the Universe related to the interaction of the

different components inside it.

1. Hubble’s Constant: In the Hubble’s law, it is the constant that relates the reces-

sional velocity of an object with its position:

v = rH (1.28)

If r is the physical coordinate of the object (r = ax), then v = dr/dt, and we can

obtain an expression for the Hubble’s constant as a function of the scale factor from

the Friedmann equations:

ȧ

a
= H(t) (1.29)

Equation 1.29 give us the rate of change in time of a per unit of the scale factor

of the Universe. This last equations tells that, actually, H is not constant, but it

is an important parameter to characterize the Universe expansion rate. Using the

solutions to the Friedmann equation and changing from time t to redshit z, we can

write:

H(z) = H0E(z) (1.30)

H0 = 100h km s−1 Mpc−1 (1.31)

Where h is known as the Hubble’s parameter and has an approximate value of

h ≈ 0.70. We will soon see an explicit expression for E(z).
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2. Critical Density ρc: The first Friedmann equation (Equation 1.7) can be rewritten
in terms of the Hubble parameter as follows:

(
ȧ

a

)2

= H2(t) =
8πGρ

3
− kc2

a2
+

Λc2

3
(1.32)

When assuming a Universe without cosmological constant Λ = 0, and that this
Universe is flat k = 0, the density obtained with such conditions is called Universe’s
critical density, and it is the density that the Universe must have to be flat. The
critical density has the following expression:

ρc(t) =
3H2(t)

8πG
(1.33)

Remembering Equation 1.30, the critical density can be rewritten as:

ρc(z) = ρc,0E
2(z) (1.34)

ρc,0 =
3H2

0

8πG
(1.35)

3. Density Parameters Ωi: The density parameters are the ratios between the den-
sity of each component of the Universe and the critical density. The total density
parameter is the sum of all the density parameters:

Ωtotal = Ω0 =
∑
i

Ωi = Ωm + Ωr + ΩΛ + Ωk (1.36)

Where Ωi represents each of the components of the Universe, each one having the
following expression:

Ωm =
ρm
ρc

Ωr =
ρr
ρc

ΩΛ =
ρv
ρc

Ωk =
ρk
ρc

(1.37)
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In a flat Universe, the curvature density parameter is Ωk = 0 and the total density
parameter, both at any time as in the present, must be Ωtotal = Ω0 = 1.

From the Friedmann equations at present time and taking into account that we can
transform from time t to scale factor a and to redshift z, we can find an expression
for the function E(z), related to the Hubble constant H(z) in Equation 1.30, in
terms of the redshift and the density parameters at present time (represented as
Ωi,0):

E(z) =
√

ΩΛ,0 + (1− Ω0)(1 + z)2 + Ωm,0(1 + z)3 + Ωr,0(1 + z)4 (1.38)

With this outcome, we can rewrite the density parameters in terms of E(z), as
follows:

Ωm =
Ωm,0(1 + z)3

E2(z)

Ωr =
Ωr,0(1 + z)4

E2(z)

ΩΛ =
ΩΛ,0

E2(z)

(1.39)

4. Cosmological Constant Λ:

The cosmological constant Λ was used by Einstein to obtain a static Universe
from the Friedmann equation (Equation 1.32), in such a way that the gravitational
collapse would be balanced by the repulsive force due to this constant. Nowadays,
we assume that this constant is associated with the Dark Energy. The cosmological
constant allow us to disconnect the geometry of the Universe (described by the
curvature k) from its dynamics, which is governed by the interaction of the
densities of the components in the Universe.

The relation between the cosmological constant Λ and the vacuum density ρv is
given by:

Λ = 8πGρv (1.40)
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As the vacuum density ρv remains constant as the Universe expands, more Dark
Energy must continually appear to fill the increasing volume [5].

Remembering the general equation of state (Equation 1.22) and with the respective
value for ωi = ωv = −1, we obtain a relation between the cosmological constant
and its respective density parameter:

ΩΛ =
Λ

3H2(t)
=

8πGρv
3H2(t)

(1.41)

1.3.1 Universe’s Eras
As we have seen, in a cosmological model which takes into account different components,
the dynamics of the Universe will be given by the interaction of all these components.
Nowadays, the most accepted model is known as the ΛCDM model, which refers to
a Universe dominated by the cosmological constant Λ, and then by the Dark Energy,
and by the Cold Dark Matter (CDM). Dark Energy, as we have seen, is associated with
the cosmological constant, and produces a negative pressure that expands the Universe.
Observations show us that it is the major constituent of the Universe. The Cold Dark
Matter is the second major constituent, and is an hypothetical kind of matter that we can
not observe, because it does not interact electromagnetically. The only interaction of the
Cold Dark Matter is the gravitational interaction with the ordinary (or baryonic) matter.
The other components of the Universe in the ΛCDM model are the baryonic matter and
the radiation. By baryonic matter we understand all matter made by baryons, all the
ordinary matter that we can observe and forms the stars, planets and even life. Baryonic
matter is only a little piece of the components of the Universe. Radiation refers to all
relativistic particles, such as photons and neutrinos and comprehend the lesser part of the
components. Observations from some probes and satellites allows to know the relative
proportions of the components of the Universe, as in Figure 1.5.

Depending on the stage of the evolution of the Universe, some components dominates
over the other components, which allows to define the dynamics of the Universe. We can
study the different moments were one of the component dominates over the others, and
call this moment an era.

16



1.3 Cosmological Parameters

Figure 1.5: Observed proportions of the components of the Universe, in agreement with the
assumptions of the ΛCDM cosmological model. Taken from http://www.esa.int/

For_Media/Photos/Highlights/Planck.

Equation 1.27 shows that particles belonging to different categories are diluted
differently by the expansion of the Universe; at earlier epochs when the Universe was
much hotter, even massive particles were relativistic [5].

Radiation-dominated Era: As we have mentioned, in a Universe with more than
one component the density of the different componentes is given by Equation 1.27. This
equation means that along the evolution and expansion of the Universe, different compo-
nents dominates over the other, because its density becomes larger in some stages of time,
and it is when we can separate the stages of the Universe in different eras.

Radiation-dominated era refers this stage in the evolution of the Universe where the
dynamics of the Universe were set by radiation, which refers generally to the constituents
of the Universe which move relativistically, principally photons and neutrinos. This era
last for maybe 50000 years.

The equilibrium redshift zeq is defined as the redshift such that radiation and matter
had the same density Ωr = Ωm. We can find an expression for the scale factor a when the
radiation dominated (z >> zeq ) [2]:

a(t) =

(
32πρr,0

3

) 1
4

t1/2 (1.42)
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Where zeq is given by [18]:

1 + zeq ' 2.3× 104h2Ωm (1.43)

Recalling ωr = 1/3 for relativistic particles, then Equation 1.27 becomes:

a4(t)ρr = ρr,0 (1.44)

Which shows how the equivalent mass density of relativistic particles varies with
the scale factor a(t). Comparing Equation 1.44 with Equation 1.15, we can see that ρr
increases faster than ρm as the scale factor becomes smaller [5].

In the early Universe (a → 0), there must have been an early era when all relativistic
particles dominated and governed the expansion of the Universe. The transition from
the radiation era to the matter era ocurred when the scale factor satisfied ρr = ρm, or
equivalently Ωr = Ωm, then [5]:

a4
r,mρr

a3
r,mρm

=
ρr,0
ρm,0

ar,m =
Ωr,0

Ωm,0

(1.45)

Matter-dominated Era: The matter-dominated era was the epoch in the evolu-
tion of the Universe after the radiation-dominated era. In this stage, the energy den-
sity of matter exceeds the energy density of radiation in the Universe, and then, non-
relativistic particles became the dominant constituents within the Universe, both dark
matter and baryonic matter. According to the ΛCDM model, the cold dark matter
dominates the Universe at this stage. This permits the gravitational collapse to make
the very slightly more dense regions caused by quantum mechanical irregularities dur-
ing cosmic inflation become denser, ultimately leading to the formation of the struc-
tures we see in the Universe. Although there are strong theories for how the baryonic
matter formed, the ΛCDM model does not provide any mechanism for the formation
of the cold dark matter (see http://www.whillyard.com/science-pages/
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matter-epoch.html). Matter-dominated era begins for a redshift z << zeq, where

zeq is given by Equation 1.43.

It was thought that matter domination has continued to nowadays, but recent evidence

shows that the rate of expansion of the Universe started to increase some 6 to 7 thousand

million years ago, leading to the conclusion that the dark energy may have reverse the

matter domination and we are in an era of dark energy domination (see http://www.

whillyard.com/science-pages/matter-epoch.html).

For a matter-dominated Universe, also called Einstein - de Sitter Universe, the scale

factor has the following expression [2]:

a(t) =

(
3

2
H0t

) 2
3

(1.46)

In this case, the scale factor a(t) has a more rapidly evolution than in the radiation-

dominated era.

Λ-dominated Era: For high redshift z, radiation (Ωr) domains the dynamics of the

Universe. At present time, the dynamics is dominated by the cosmological constant (ΩΛ),

and the value of the components of the Universe is approximately:

Ωr,0 ∼ 10−5; Ωm,0 ∼ 0.3; ΩΛ,0 ∼ 0.7 (1.47)

Then, at present time, we can approximate Ω0 = Ωm,0 + ΩΛ,0 = 1, which is the so

called De Sitter Universe. In this Universe, the scale factor depends on time as follows

[2]:

a(t) =

(
Ωm,0

ΩΛ,0

) 1
3
[
sinh

(
3

2
Ω

1/2
Λ,0H0t

)]
(1.48)

Which can be expressed as an exponential growth, if we suppose that Ωm = 0, in this

De Sitter Universe:

a(t) = a0e
H0(t−t0) (1.49)
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This exponential growth of the scale factor can be interpreted as an accelerated rate

of the expansion of the Universe. In this stage of the evolution of the Universe, the

matter density of the Universe is so diluted that it begins losing its capacity to restrain

the expansion of the Universe, which hence accelerates. Empty voids of space grow ever

larger between local clusters of gravitationally-concentrated matter.

We can find the value of the scale factor in the moment where the transition between

the matter-dominated era and the Λ-dominated era, that means, when the respective den-

sities were equal ρm = ρv or Ωm = ΩΛ. The transition value of a is given by:

am,Λ =

(
Ωm,0

ΩΛ,0

)1/3

(1.50)

1.4 Formation of Structures

1.4.1 General Framework

The ΛCDM model assumes that structure we observe in the Universe today grows from

density perturbations in a hierarchical form, that is, the first structures to form where

the small ones, and then, through coalescence of this small structures, the big ones are

formed, as Dark Matter haloes where galaxies and galaxy clusters are established [17].

We can define the density contrast of the matter, or in particular of the dark matter, as

∆(x) =
ρ(x)− ρ

ρ
(1.51)

Where ρ(x) is the matter density of the Universe at a certan position x, ρ is the

mean density of matter in all the Universe and ∆(x) is the called density contrast which

measures the fluctuation of the matter density in a point x respect to the mean density of

matter. The current density contrast associated with a galaxy will be ∆G ∼ 106, for a

cluster of galaxies will be ∆C ∼ 103 and for a supercluster of galaxies ∆SC ∼ 10. Now,

the growth of structure will be linear until ∆ ∼ 1, then as ρ ∼ a−3, one can see that the

redshift at which galaxies start to form is nearly z ∼ 100, for a cluster z ∼ 10 and for

superclusters z ∼ 1, in agreement with the assumption of the hierarchical formation [17].

The large scale structures (LSS) emerge from overdensities in the Dark Matter

density field, generated by primordial density field fluctuations, allowing the formation

of gravitational potential wells or haloes. In those haloes, baryonic matter starts to
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cool and collapse. Once the collapse of baryonic matter starts, Jeans unstable hydrogen

clouds begin to collapse independently, allowing the formation of the first stars and

protogalaxies, which evolved from collisions and coalesence, in a hierarchichal formation

[17]. The collapse of baryonic matter starts after decoupling time, when the Universe’s

temperature has decreased enough such that Compton Effect is no frequent, leaving

the radiation free from its interaction with matter. As Dark Matter can not be observed

directly, those overdensities may be inferred from the local number density of galaxies

on the dark matter haloes [16].

1.4.2 Equation of Evolution of the Density Contrast and Theoretical
Model of Linear Fluctuations

Now, we are going to write an equation for the evolution of the density contrast in the

expanding Universe. Starting with the equation of conservation of mass (equation of

continuity), the equation of motion for an element of a fluid (Euler’s equation) and the

equation for the gravitational potential in the presence of a mass density distribution ρ

(Poisson’s equation):

dρ(x, t)

dt
+∇ · (ρ(x, t)v) = 0 (1.52)

dv

dt
+ (v · ∇)v = −∇P

ρ
−∇Φ (1.53)

∇2Φ = 4πGρ (1.54)

Where Equation 1.52 is the continuity equation, in which ρ represents the density in

a certain point x, and v is the peculiar velocity of the density distribution at this point.

Equation 1.53 is the Euler’s equation for the motion of an element of a fluid; here P is

the pressure and Φ is the gravitational potential. Finally, Equation 1.54 is the Poisson’s

equation, where G is the gravitational constant.

Performing perturbations on those equations, we can obtain the following expressions:

d∆

dt
= −∇ · δv (1.55)
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dδv

dt
+ (δv · ∇)v0 = −∇δP

ρ0

−∇δΦ (1.56)

∇2δΦ = 4πGδρ (1.57)

Where Equation 1.55 is the perturbed continuity equation in which ∆ is the density
contrast from Equation 1.51 and δv is the perturbed peculiar velocity. Equation 1.56 is
the perturbed Euler equation, in which v0 is the unperturbed peculiar velocity and ρ0

the unperturbed density, and Equation 1.57 is the perturbed Poisson’s equation. Those
equations lead to the general one:

d2∆

dt2
+ 2

(
ȧ

a

)
d∆

dt
− 4πGρ0∆ = 0 (1.58)

Which is the equation of evolution of the density contrast. It is important to say that
the time derivative is a convective derivative, that means:

d

dt
=

∂

∂t
+ v · ∇ (1.59)

Solutions for Equation 1.58 can be obtained in the form:

∆(a) =
5Ω0

2

(
1

a

da

dt

)∫ a

0

da′

(da′/dt)3
(1.60)

or in terms of Hypergeometric functions or just writing it as:

∆(x, t) = A(x)D1(t) +B(x)D2(t) (1.61)

where A and B are to be found. D1(t) and D2(t) are called the growing and decaying
modes, or growth and decaying amplitudes, respectively.

For a critical or Einstein - de Sitter Universe (i.e. Ωtot = Ωm = 1), these solutions can
be reduced to:

∆ ∝ D1 ∝ t2/3 ∝ a (1.62)

∆ ∝ D2 ∝ t−1 ∝ a−3/2 (1.63)
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1.4 Formation of Structures

The decaying mode is usually discarded in theoretical studies; for longer periods of
evolution its amplitude becomes negligible compared with that of the growing mode if
we do not have very specific initial conditions.

In this model, although ∆ is growing in thime, the physical overdensity
δρ = ρ − ρ = ρ∆ actually gets smaller: δρ ∼ a−2 ∼ t−4/3. In the linear regime,
the infall of matter into objects is slower than the expansion of the Universe. The
formation of structures is due to the fact that at some limiting value of ∆ the process
becomes nonlinear and causes a really fast growth of density [15].

A general and almost analitical solution of Equation 1.58 can be found by making a
variable change from time t to redshift z as follows [15]:

dz

dt
= −H0(1 + z)E(z) (1.64)

Then, the density contrast equation transforms to:

∆′′ +

(
E ′

E
− 1

x

)
∆′ − 3

2
Ωm

x

E2
∆ = 0 (1.65)

With x = 1 + z as a redshift-type variable and the primes denote differentiation with
respect to x. Defining a new function β(x), the density contrast can be rewritten in terms
of this functions:

∆ = Eβ (1.66)

With E given by Equation 1.38. Substituting this last definition in Equation 1.58, we
get:

Eβ′′ +

(
3E ′ − E

x

)
β′ +

(
E ′′ +

E ′2

E
− E ′

x
− 3

2
Ωm

x

E

)
β = 0 (1.67)

The coefficient for β is zero for any E2(x) that is a cubic polynomial in x, and this
class also includes the E2 for the canonical (Ωm,ΩΛ) models [15]. Thus, we can write:

Eβ′′ +

(
3E ′ − E

x

)
β′ = 0 (1.68)
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Which gives

β′ = A
x

E3
(1.69)

With A constant. The general solution of Equation 1.58 can be written as:

∆(z) = AD1(z) +BD2(z) (1.70)

Where the partial solutions D1(z) and D2(z) are the growing and decaying modes
mentioned in Equation 1.61, respectively. The growing and decaying modes has the fol-
lowing expressions

D1(z) = E(z)

∫ ∞
z

(1 + z′)

E3(z′)
dz′ (1.71)

D2(z) = E(z) (1.72)

With E(z) given by Equation 1.38. The integral for the growth amplitude can be
taken analitically for all ΩΛ = 0 models, but for models with cosmological constant
different of zero, solutions have to be found numerically [14].

As we will work only with the growing mode, or near-growth factor D1, we will call
it simply D. Another expression for the growing mode in terms of the scale factor a is
given by [13]:

D(a) =
5

2

(
Ωm,0

ΩΛ,0

)1/3
√

1 + y3

y3/2

∫ y

0

y′3/2

[1 + y′3]3/2
dy′ (1.73)

y ≡ a

(
ΩΛ,0

Ωm,0

)1/3

(1.74)

We can also relate the density contrast with the linear-growth factor by mean of:

∆(a) =
D(a)

D(1)
(1.75)
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For Ωm > 0.1, the linear-growth factor D(a) can be accurately approximated by:

D(a) =
(5/2)aΩm

Ω
4/7
m − ΩΛ + (1 + Ωm/2)(1 + ΩΛ/70)

(1.76)

With the matter density parameter Ωm and cosmological constant density parameter
ΩΛ related with the scale factor as follows:

Ωm(a) =
Ωm,0

(1 + y3)
(1.77)

ΩΛ(a) = 1− Ωm(a) (1.78)

1.5 Sachs-Wolfe Effect

1.5.1 Cosmic Microwave Background
In 1946, George Gamow was pondering the cosmic abundances of elements. Realizing
that the newborn, dense Universe must have been hot enough for a burst of nuclear
reactions to occur, he proposed that a sequence of reactions in the very early Universe
could explain the measured cosmic abundance curve. Gamow altogether with the work
of Alpher and Herman, showed that the Big Bang could explain some features, as the
abundance of helium, that other models considering an steady Universe could not explain.

Supossing the early Universe to be hot and dense, so that the mean free path of
photons would have been short enough to maintain the thermodynamic equilibrium,
the radiation field would have a black-body spectrum. In 1948, Alpher and Herman
published their description of how this black-body radiation would have cooled as the
Universe expanded, predicting that the Universe should now be filled with the black-body
radiation at a temperature of 5 K.

In 1964 two radio astronomers, Arno Penzias and Robert Wilson, were working
at Bell Laboratories in Holmdel, New Jersey, with a huge horn reflector antenna that
had been used to communicate with the Telstar satellite. They found a persistent hiss
in the signal that came from all directions and realize that a 3 K black-body radiation
could be producing this interference. The astronomers detected the black-body radiation
that fills the Universe, with a peak wavelength of λmax = 1.06 mm in the microwave
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region of the electromagnetic spectrum, nowadays known as the Cosmic Microwave

Background (CMB). In 1991, the COBE satellite measured a temperature of 2.725 K,

while nowadays we know the temperature of the black-body spectrum of the CMB is

about 2.72548±0.00057 K.

1.5.2 The Origin of the CMB and the Surface of Last Scattering

The copious electrons (e−) in the hot environment of the very early Universe obstructed

the photons (γ) of the CMB, allowing them to travel only relatively short distances

before being scattered. The scattering of photons by free electrons kept the electrons in

thermal equilibrium, meaning they had the same temperature. As the cross section for

photon-proton (γ−p+) scattering is smaller than the Thomson cross section for electrons,

this interaction can be neglected; but as there is Coulomb interaction between electrons

and protons, the protons kept in thermal equilibrum with the electrons and photons.

The expansion of the Universe diluted the number density of free electrons, and the

average time between scatterings of a photon by an electron gradually approached the

characteristic timescale of universal expansion:

τexp(t) ≡
(

1

a(r)

da(t)

dt

)−1

=
1

H(t)
(1.79)

As the time of decoupling approached, photons became disengaged from electrons. If

the electrons had remained free, decoupling time would have occurred when the Universe

was about 20 millions years old; however, when the Universe was about 1 million years

old, the opacity of the Universe was altered and it became transparent. The independent

evolution of radiation and matter began when the temperature cooled sufficiently to allow

the free electrons to combine with nuclei of hydrogen and helium in a process known as

recombination. This process drop the opacity, freeing the photons to roam unhindered

throughout this newly transparent Universe. The photons of the CMB that we observe

today were last scattered during the time of recombination.

We can define the surface of last scattering as a spherical surface, centered on Earth,

from which the CMB photons just now arriving at Earth were last scattered before

beginning their unimpeded journey to us. The surface of last scattering is the farthest

redshift we can possibly observe at this moment in time. Because of recombination did
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not happen all at one, the surface of last scattering actually has a thickness ∆z.

Although at the first moments of the Universe the CMB looks to be almost uniform,

there exist some perturbations to this uniformity, called CMB anisotropies. Those

anisotropies are due to different interactions between the CMB photons and particles

or fields, such as the gravitational potential wells, and other anisotropies are due to the

movement of the Solar System through the galaxy and even the relative movement of the

galaxy in the local cluster. Some of the temperature anisotropies are called primordial

anisotropies which are the result of the density perturbations in the early Universe

which seeded the formation of galaxies and clusters. Those primordial anisotropies were

formed by the scattering of CMB photons before the surface of last-scattering. Other

anisotropies are named secondary CMB anisotropies, which occur when the photons

were scattered after the surface of last-scattering. The shape of the blackbody spectrum

can be altered through inverse Compton scattering by the thermal Sunyaev-Zel’dovich

effect. The effective temperature of the blackbody can be shifted locally by a Doppler

shift from the peculiar velocity of the scattering medium as well as by passage through

the changing gravitational potential caused by the collapse of nonlinear structure or the

onset of curvature or cosmological constant domination [9].

Figure 1.6: Cosmic Microwave Background map from the Planck satellite.
This map is of the entire celestial sphere in an equal-area Mollwiede pro-
jection. In this map we can see the anisotropies of the CMB. Taken from
http://www.esa.int/Our_Activities/Space_Science/Planck/

Planck_and_the_cosmic_microwave_background
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Figure 1.7: The anisotropy of the CMB consists of the small temperature fluctuation in the
blackbody radiation left over from the Big Bang. The average temperature of the CMB ra-
diation is 2.72548 K and without any contrast enhancement, the CMB looks like the up-
per left figure. The dipole anisotropy due to the Doppler shift in the movement of the
Solar System can be seen in the in the upper right figure. In this upper right figure we
can also see the emission from the Milky Way which dominates the red color in the pic-
ture. If the average temperature and the dipole pattern are removed, the intrinsic fluctua-
tions in the CMB can be seen faintly away from the Milky Way in the lower left figure.
Combining the multiple frequencies in a way that eliminates the Milky Way, we can see
the CMB map in the lower right figure with a 30 000X contrast enhancement. Taken from
http://www.astro.ucla.edu/˜wright/CMB-DT.html.

1.5.3 The Dipole Anisotropy of the CMB

All observers at rest respect to the Hubble flow have no peculiar velocity, and see the

same spectrum for the CMB with the same intensity at all directions, i. e., an isotropic

CMB. In particular, two observers in different galaxies that are being carried apart by

the Hubble flow see the same black-body spectrum. However, there is a Doppler shift of

the CMB caused by an observer’s peculiar velocity through space, relative to the Hubble

flow. Using the Wien’s law, a shift in wavelength can be expressed as a change in the

temperature of the black-body radiation; for example, a slight blueshift (smaller λmax)

would correspond to a slightly higher temperature; while a redshift (larger λmax) would

correspond to a slightly lower temperature.

Let’s suppose an observer at rest relative to the Hubble flow, who determines that the

CMB has a temperature Trest. The temperature measured by and observer with peculiar
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1.5 Sachs-Wolfe Effect

velocity v relative to the Hubble flow is:

Tmoving =
Trest

√
1− v2/c2

1− (v/c) cos θ
(1.80)

Being θ the angle between the direction of observation and the direction of motion.
Both observers see a black-body spectrum, but the moving observer measures a slightly
hotter temperature in the forward direction (θ = 0) and a slightly cooler temperature in
the opposite direction. In the case that the peculiar velocity is v << c, we can use the fact
that 1− v2/c2 ≈ 1 and the geometric serie to find a new expression for Equation 1.80:

Tmoving = Trest

(
1 +

1

c
cos θ

)
(1.81)

The second term on the right-hand side is called the dipole anisotropy, and has
been detected and measured by probes as the COBE and the WMAP. After the dipole
anisotropy has been substracted from the CMB, the remaining radiation is highly
isotropic, having nearly equal intensity in all directions. The CMB does have hotter
and cooler areas, appearing as a patchwork of small regions, about 1◦ degree of less in
diameter, where the temperature departs from the average value T0 by about one part in
105.

1.5.4 The Sunyaev-Zel’dovich Effect (Anisotropy)
It should be emphasized that an observer being carried along with the Hubble flow, i.e.,
with no peculiar velocity, does not measures a Doppler shift on the CMB. An observer in
a distant galaxy receding from us at an appreciable fraction of the speed of light sees the
same CMB spectrum that we do. Evidence of this is produced when low-energy photons
of the CMB pass through the hot (∼ 108 K) ionized intracluster gas in a rich cluster
of galaxies. A small fraction of the photons (typically 10−3 to 10−2) are scattered to
higher energies by the high-energy electrones in the gas. This inverse Compton scattering
increases the frequency of a scattered photon by an average amount ∆ν of:

∆ν

ν
=

4kBTe
mec2

(1.82)

Where kB is the Boltzmann constant, Te is the temperature of the electron gas, me

is the mass of one electron and c is the speed of light. The resulting distortion of the
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CMB spectrum is called the thermal Sunyaev Zel’dovich effect. This is sketched in Fig-

ure 1.8. Although the spectrum no longer has the precise shape of a blackbody spectrum,

its translation to higher frequencies may be used to define an effective decrease ∆T in the

temperature of the CMB T0 of approximately

∆T

T0

' −2
kBTe
mec2

τ (1.83)

Where τ is the optical depth of the intracluster gas along the line of sight. Typical

values of ∆T/T0 are a few times 10−4. Observations of the Sunyaev-Zel’dovich effect

for many clusters of galaxies confirm that it is independent of the cluster’s redshift, as

expected if the CMB spectrum observed at a cluster is not affected by the cluster’s reces-

sional velocity [5].

Figure 1.8: The undistorted CMB spectrum (dashed line) and the spectrum distorted by the
Sunayev-Zel’dovich effect (solid line). In a rich cluster of galaxies, CMB photons may be
scattered to higher frequencies by colliding with the electrons in the hot intracluster gas.
For frequencies less than the peak frequency, more photons are scattered out of a frequency
interval than into it, so the intensity at that frequency decreases. Similarly, for frequencies
greater than the peak frequency, fewer photons are scattered out of a frequency interval than
into it, so the intensity at that frequency increases. The net result is a shift of the CMB
spectrum to higher frequencies. Taken from [5].
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1.5.5 The Integrated Sachs-Wolfe Effect (Anisotropy)

There are two kinds of Sachs-Wolfe effect. The Non-integrated Sachs-Wolfe effect or

Ordinary Sachs-Wolfe effect caused by gravitational redshift occurring at the surface of

last scattering, to intrinsic temperature inhomogeneities on this last scattering surface

and to the inhomogeneities of the metric. The effect is not constant across the sky

due to differences in the matter density at the time of last scattering. The Integrated

Sachs-Wolfe (ISW) effect occurs between the surface of last scattering and the Earth, and

is caused by gravitational redshift, but is not a part of the primordial CMB anisotropies.

While most CMB anisotropies are generated at very early times, further fluctuations can

be induced gravitationally at late times as photons pass through evolving gravitational

potential wells. If dark matter dominates, the gravitational potential wells do not vary

with time, but the presence of dark energy or spatial curvature will cause the potentials to

evolve at late times, producing new temperature fluctuations, or secondary anisotropies,

at low redshift (primarily at z < 2), as the photons pass through regions of overdensities

or underdensities. Directly observing these new CMB temperature anisotropies is

challeging, primarily because their amplitudes are a fraction of the anisotropies arising

from higher redshifts.

The theoretical background of the SW effect dates back to 1966, when R. K. Sachs

and A. M. Wolfe found solutions to the linear perturbations of the Einstein’s field

equations, in order to obtain fluctuations of the density field [21].

In a Λ-CDM Universe, dominance of the cosmological constant Λ causes that the

scale factor a grows at a faster rate than the linear growth of density perturbations ∆.

Consequently, the cosmological constant has the direct dynamical effect of causing

gravitational potential perturbations to decay as δΦ ∝ −∆/a. The ISW effect is caused

by the change in the energy of CMB photons as they traverse these linearly evolving

potentials. When CMB photons pass through an overdense region, it will gain more

energy falling into the potential well than the energy it will lose when climbing out of the

evolved shallower potential well. The potential well will become shallower due to the

expansion of the Universe. Therefore, overdense regions correspond to hot regions in a

linear ISW map. Conversely, when a CMB photon pass through an underdense region,

the potential fluctuation is positive and the photon loses more energy while climbing

the potential hill than the energy it will gain when from its descent. Then, underdense

regions appear cold in a linear ISW map [4].
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The change of the energy of the CMB photons can be associated with a change in the
temperature, that means that the temperature fluctuations are related to the evolution of the
gravitational potential. The temperature fluctuation along a direction n̂ can be written as
an integral of the time derivative of the gravitational potential, Φ̇, from the last scattering
surface to the present [4]:

∆T (n̂) =
2

c2
T 0

∫ t0

tL

Φ̇(t, n̂) dt (1.84)

Where t is the cosmic time, tL the age of the Universe at the last scattering surface, t0
the present age of the Universe, Φ̇ the time derivative of the gravitational potential, T0 the
mean CMB temperature and c the speed of light. This is equivalent to the integral over
radial comoving distance xr [4]:

∆T (n̂) =
2

c3
T 0

∫ xr,L

0

Φ̇(xr, n̂) dxr (1.85)

Where xr,L is the comoving distance to the last scattering surface.

The expression for the time derivative of the gravitational potential may be obtained
by means of the the Poisson equation of gas dynamics for a fluid in a gravitational field
in comoving coordinates, mentioned in Equation 1.57. Solving this equation by means of
Fourier methods, we can find the gravitational potential:

Φ(k, t) = −4πGa2ρ(t)
∆(k, t)

k2
(1.86)

When taking the time derivative of Equation 1.86, an expression for the time derivative
of the gravitational potential Φ̇, in the Fourier space can be found, as follows:

Φ̇(k, t) = −3

2

H2
0

k2
Ωm,0

[
H(t)

a(t)
∆(k, t) +

∆̇(k, t)

a(t)

]
(1.87)

From Equation 1.87, we can see a dependence on the matter density parameter Ωm, on
the Hubble’s function H(t), in the contrast density ∆ and even in the evolution on time
of the contrast density ∆̇, which means that the evolution of the gravitational potential
well depends on how the fluctuations of the matter density evolves in time. Figure 1.9
shows a brief sketch of the energy change that the photons of the CMB undergo due to
the Sachs-Wolfe effect.
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Figure 1.9: Scheme of the Sachs-Wolfe effect. When the photons pass through a gravi-
tational potential, they will gain energy when falling off the potential and will lose energy
when climb it. The difference in the energy they gain or lose depends on the expansion rate
of the Universe. Taken from http://cmbcorrelations.pbworks.com/w/page/

4563978/The%20late-time%20integrated%20Sachs%20Wolfe%20effect

1.5.6 Cosmic Harmonics and Accoustic Oscillations
When the Universe was roughly 105 yrs old, it became filled with sound waves that
traveled through the primordial plasma composed by photons and baryonic matter.

As the density of a region was enhanced by a compression, it was heated by a
small amount δT/T ≈ 10−5, until radiation pressure reverse the motion. Similarly,
as the density was diminished by an expansion, it cooled. The small amplitude of the
sound waves means that a passing wave will cause the photon-baryon fluid to execute
simple harmonic motion. This motion continued until the time of decoupling, when
electrons (e−s) combined with the protons (p+s) and heavier nuclei formed in Big Bang
nucleosynthesis.

The photons of the CMB carried with the signature of these accoustic oscillations.
Some areas of the CMB appear slightly hotter, others slightly cooler. The frequency of
the photons is also affected by the Sachs-Wolfe Effect, as the photons lose energy when
they climb out of the gravitational potential wells of the density fluctuations. We will
return to this issue later.

The overall pattern of CMB temperature variations on the celestial sphere can be ex-
pressed as the sum of spherical harmonic functions Y l

m(θ, φ). The temperature fluctutation
in the direction of the angular position (θ, φ) is:

∆T (θ, φ)

T
=
∞∑
l=1

l∑
m=−l

almYlm(θ, φ); alm ∈ C (1.88)
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The value of alm can be determined by observing the CMB and making measurements
of δT/T in all directions. The term l = 1 is the dipole anisotropy through space relative
to the Hubble flow. Now, defining the correlation function C(θ) as:

C(θ) =< ∆T (n1)∆T (n2) > |n1·n2=cos θ (1.89)

=
1

4π

∑
l

(2l + 1)ClPl(cos θ) (1.90)

Where Cl is defined as an ensemble average with spherical symmetry, or as an angular
average over the 2l + 1 values of m, in order to avoid the effect of an arbitrary choice of
φ = 0:

Cl =< |alm|2 >'
1

2l + 1

∑
m

|alm|2 (1.91)

At small l, the values of the two expressions of Equation 1.91 differ appreciably due
to cosmic variance. With the help of the orthogonality of the Legendre polynomials, we
have a relation between Cl and the correlation function C(θ):

Cl = 2π

∫ π

0

C(θ)Pl(cos θ) sin θdθ (1.92)

The values of Cl contain much information about the physical conditions and con-
stituents of the early Universe. From Equation 1.91, we can define the angular power
spectrum to be l(l + 1)Cl/2π. Every term in the summation is ≥ 0, so both positive and
negative temperature fluctuations contribute to the angular power spectrum withouth can-
celling each other. We will see more about the angular power spectrum in the following
section.

1.5.7 The Angular Power Spectrum of the CMB
From Equation 1.88, we can define the expansion coefficients alm as:

alm =

∫
∆T Y ∗lm(θ, φ) dΩ (1.93)

We can take an ensemble average:
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< alm a∗l′m′ >=

∫∫
dΩ1 dΩ2 Y

∗
lm(n1) Yl′m′(n2) < ∆T (n1) ∆T (n2) > (1.94)

Assuming spherical symmetry, the autocorrelation function < ∆T (n1) ∆T (n2) >

can only depend on θ12, where cos θ12 = n1 · n2. Expanding the autocorrelation function
in Legendre polynomials Pn:

< ∆T (n1) ∆T (n2) >=
∑
n

kn Pn(cos θ12) (1.95)

Where kn are constant expansion coefficients, and with the addition theorem of spher-
ical harmonics:

∑
j

Ynj(n1) Y ∗nj(n2) =
2n+ 1

4π
Pn(cos θ12) (1.96)

Using Equation 1.95 and Equation 1.96 in Equation 1.94, renamingCn = 4πkn/(2n+

1) and applying some properties of the spherical harmonics, we can obtain the equality in
Equation 1.91. Hence:

Cl =

∫
dΩ1

∫
dΩ2 Y

∗
lm(n1) Ylm(n2) < ∆T (n1) ∆T (n2) > (1.97)

Summing Equation 1.97 over m, produces a factor of 2l + 1 on the left, while on the
right using Equation 1.96:

l∑
m=−l

Cl = (2l + 1)Cl =
2l + 1

4π

∫
dΩ1

∫
dΩ2 Pl(cos θ) < ∆T (n1) ∆T (n2) > (1.98)

From Figure 1.10, the integration over Ω2 in Equation 1.98 is performed first using
spherical coordinates in the x′y′z′-frame at fixed n1. In this fram the coordinates of n2

are θ12 and φ12. Because the integrand is axially symmetric around the z′-axis, we have:

∫
dΩ2 = 2π sin θ12dθ12 (1.99)

Spherical symmetry renders the remaining integrand independent of n1, so that
∫

dΩ1

produces just a factor of 4π. Then:
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Figure 1.10: The integration over Ω2 in Equation 1.98 is performed first, using spherical
coordinates in the x′y′z′-frame at fixed n1. In this frame the coordinates of n2 are θ12, ϕ12.
Because the integrand is axially symmetric aroun the z′-axis we have the expression of Equa-
tion 1.99, and the result is Equation 1.100. Spherical symmetry renders the remaining inte-
grand independent of n1, so that

∫
dΩ1 produces just a factor 4π. Image taken from [11].

Cl =
1

4π

∫
dΩ1

∫ π

0

2π sin θ12 dθ12 < ∆T (n1) ∆T (n2) > |n1·n2=cos θ12 (1.100)

Cl =
4π

2

∫ π

0

C(θ) Pl(cos θ) sin θ dθ (1.101)

Where we have changed θ12 → θ and applied Equation 1.89. This last equation is
Equation 1.92. Now, expanding C(θ) in Legendre polynomials:

C(θ) =
∑
n

An Pn(cos θ) (1.102)

Inserting this last equation in Equation 1.101, and using:

∫ 1

−1

Pn(x) Pm(x) dx =
2

2n+ 1
δnm (1.103)

We obtain:

Cl = 2π

∫ π

0

An Pn(cos θ) Pl(cos θ) sin θ dθ (1.104)

⇒ Al =
(2l + 1) Cl

4π
(1.105)

36



1.6 Cosmological Simulations of Formation of Structures

Finally, replacingAn in the expansion in Legendre polynomials forC(θ) and changing
n→ l:

C(θ) =
∑
l

(2l + 1) Cl
4π

Pl(cos θ) (1.106)

Which is Equation 1.90. Remembering the concept of the angular power spectrum
given by

l(l + 1)Cl/2π (1.107)

from Equation 1.91. This power spectrum is shown in Figure 1.11. In this power
spectrum, we speak of an angular frequency called the multipole moment l. The reciprocal
of l corresponds to the angular scale. For example, l = 10 corresponds to roughly 10
degrees on the sky, and l = 100 corresponds to roughly 1 degree on the sky (see http:
//background.uchicago.edu/˜whu/intermediate/map5.html).

The angular power spectrum of the anisotropy of the CMB contains information about
th formation of the Universe and its current contents. This angular power spectrum is a
plot of how much the temperature varies from point to point on the sky (the y-axis vari-
able) vs. the angular frequency l (see http://www.astro.ucla.edu/˜wright/
CMB-DT.html).

The power spectrum shows a flat plain for small values of l, a fundamental peak
around l ' 200, which corresponds to an angular size of about 1o on the sky, and a
few harmonics peaks whose heights decline as l approaches 1000; those peaks are called
accoustic peaks. A detailed analysis shows that the location of the first peak is sensitive
to the value of Ω0, given by l ' 200/

√
Ω0. This angular power spectrum can be seen

in Figure 1.11 where it is shown the best fit of the ΛCDM model, and in Figure 1.12,
where we can see the relation between the different anisotropies and the angular power
spectrum.

1.6 Cosmological Simulations of Formation of Structures
This section is a brief summary of the the information found in [12] and [6].

In the hierarchical picture of structure formation, small objects collapse first and then
merge to form larger and larger structures in a complex manner. This formation process
is evident in the intricate structure of galaxy clusters, whose properties depend on how
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1. THEORETICAL FRAMEWORK

Figure 1.11: The angular power spectrum of the temperature fluctuations in the CMB. The
solid line is the best-fit ΛCDM model.

the thousands of smaller objects that the cluster accretes are destroyed or survive within

the cluster gravitational potential. These merging events are source of processes such as

shocks, turbulence and acceleration of relativistic particles in the intracluster medium. In

order to model these processes realistically, we need to resort to numerical simulations

which are capable of resolving and following correctly the highly non-linear dynamics.

Numerical simulation in cosmology have a long history, numerous important aplications

and play a very significant role. It all started in the 60s (Aarseth 1963) and 70s (Peebles

1970; Press & Schechter 1974) with simple N-body problems solved using N-body codes

with a few hundred particles. Later the Particle-Particle (PP) code, or direct summation

of all two-body forces, was polished and brought to the state-of-art (Aarseth 1985). From

this moment, problems such a more realistic density profile and the generation of initial

condition with given amplitude and spectrum of fluctuations were solved with the help of

different approximations to the structure-formation models and the implementation of a

variety of new numerical methods and codes which allows to find more resolution in the

forces calculation and particle’s positions. Some methods are described in the following

sections.
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1.6 Cosmological Simulations of Formation of Structures

Figure 1.12: Anisotropies in the angular power spectrum of the CMB. We can see the contri-
butions of the Non-integrated SW effect, or Early SW effect, which is produced in the surface
of last scattering and the contribution of the ISW effect, or Late SW effect, which is the ef-
fect we are studying in this work. The Late SW effect contributes only for small multipole
moment l which means that it can be detected only in large scales.

1.6.1 N -body Simulations and Equations of Evolution of Fluctuations
in Expanding Universe

Usually the problem of the formation and dynamics of cosmological objects is formulated

as N-body problem: for N point-like objects with given initial positions and velocities

find their positions and velocities at any later moment. Over most of the cosmic time

of interest for structure formation, the Universe is dominated by dark matter. The most

favourable model turned out to be the so-called Cold Dark Matter (CDM) model. The

CDM can be described as a collisionless, non-relativistic fluid of particles of mass m,

comoving coordinate position x and momentum p. In general, if we neglect the baryonic

component, the system is described by the distribution functions fi(x,p, t); for a simple

CDM model we have only one component. The phase-space distribution function of the

dark-matter fluid (CDM) can be described by the collisionless Boltzmann equation (CBE

or Vlasov equation) coupled to the Poisson equation:
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∂f

∂t
+

p

ma2
∇f −m∇Φ

∂f

∂p
= 0; where p = ma2ẋ (1.108)

∇2Φ(x, t) = 4πGa2[ρ(x, t)− ρ(t)] (1.109)

Here the proper mass density can be inferred by integrating the distribution function
over the momenta p.

ρ(x, t) =

∫
f(x,p, t) d3p (1.110)

This set of equations represents a high-dimensional problem. The solution of the CBE
equation can be written in terms of equations of characteristics, which look like equations
of particle motion:

dp

dt
= −m∇Φ (1.111)

dx

dt
=

p

ma2
(1.112)

These equations can be written in other expression when using the proper peculiar
velocity v = aẋ:

dv

dt
+ v

ȧ

a
= −∇Φ

a
(1.113)

Where the time derivative of the scale factor ȧ, can be obtained from the Friedmann
equation as follows:

ȧ = H0

√
1 + Ωm,0(a−1 − 1) + ΩΛ(a2 − 1) (1.114)

One of the most famous N -body simulation is the Millennium simulation performed
by the Virgo Consortium in 2005. With the help of the Max Planck Society’s Super-
computing Centre in Garching, Germany, they trace the evolution of the matter distribu-
tion in a cubic region of the Universe over 2 thousand million light-years on a side of
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1.6 Cosmological Simulations of Formation of Structures

21603 particles, where each particle represents approximately a thousand million solar

masses of dark matter. They have been able to recreate the evolutionary histories both

for 20 million or so galaxies which populate this volume and for the supermassive black

holes which occasionally power quasars at their hearts. By comparing such simulated

data to large observational surveys, they can clarify the physical processes underlying

the buildup of real galaxies an black holes (see http://www.mpa-garching.mpg.

de/galform/virgo/millennium/). A picture with some results is shown in Fig-

ure 1.13.

Figure 1.13: Results from the Millenium Project, 2005. The results of this simulation show
us filaments and other structures also detected in the observations. Taken from http://

www.mpa-garching.mpg.de/galform/virgo/millennium/.

1.6.2 Codes and Methods

There are many different numerical techniques to follow the evolution of a system of

many particles. Most of the methods for cosmological applicaitons take some ideas from

three techniques: Particle Mesh (PM) code, direc summation of Particle-Partilce code,

and the TREE code. All methods have their advantages and disadvantages.
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1. THEORETICAL FRAMEWORK

Direct Sum:The most direct way to solve the N -body problem is to sum directly the
contributions of all the individual particles to the gravitational potential Φ(r):

Φ(r) = −G
∑
j

mj

(|r− rj|2 + ε2)1/2
(1.115)

Where G is the gravitational constant, mj is the mass of j-ith particle, rj its respec-
tive position and ε is a gravitational softening. In principle, this sum would represent the
exact (Newtonian) potential which generates the particle’s acceleration. In a collisionless
models close encounters between individual particles are irrelevant to the physical prob-
lem under considerations, but in such N -body simulations, close encounter could occur,
giving some numerical inconsistencies, then the gravitational force between two particles
must be smoothed by introducing the gravitational softening ε. This softening reduces the
spurious two-body relaxation which occurs when the number of particles in the simulation
is not large enough to represent correctly a collisionless fluid. This situation however is
unavoidable, because the number of dark matter particles in real systems is orders of mag-
nitude larger than the number that can be handled in a numerical simulation. Typically, ε
is chosen to be 1/20−1/50 of the mean inter-particle separation within the simulation. In
general, this direct-sum approach is considered to be the most accurate technique, and is
used for problems where superior precision is needed. However this method has the dis-
advantage of being already quite CPU intensive for even a moderate number of particles
, because the computing time is ∝ N2, where N is the total number of particles.

PM Code:This method uses a mesh to produce density and potential. As the result,
its resolution is limited by the size of the mesh. There are two advantages of the method:
(1) it is fast, because it has the smallest number of operations per particle per time step of
all the other methods, (2) it typically uses very large number of particles.
The PM method treats the force as a field by computing it on a mesh. Differential
operators, such as the Laplacian, are replaced by finite difference approximations
Potentials and forces at particle positions are obtained by interpolation on the array of
mesh-defined values. Typically, such an algorithm is performed in three steps. First,
the density on the mesh point is computed by assigning densities to the mesh from the
particle positions. Second, the density field is transformed to Fourier space, where the
Poisson equation is solved. Alternatively, the potential can be determied by solving
Poisson’s equation iteratively with relaxation methods. In a third step the forces for the
individual particles are obtained by interpolating the derivatives of the potential of the
particle positions. Typically, the amount of mesh cells Ng used is lower respect to the
number of particles in the simulation, so that when structures form, one can have large
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1.6 Cosmological Simulations of Formation of Structures

numbers of particles within individual mesh cells, which immediately illustrates the

shortcoming of this method: its limited resolution. On the other hand, the calculation

of the Fourier transform via a Fast Fourier Tranform (FFT) is extremely fast, as it only

needs of order Ng log (Ng) operations, which is the advantage of this method.

There are many schemes to assign the mass density of the mesh. The simplest method

is the “Nearest-Grid-Point” (NGP). Here, each particle is assigned to the closest mesh

point, and the density at each mesh point is the total mass assigned to the point divided

by the cell volume. One of its drawbacks is that it gives forces that are discontinuous.

The “Cloud-in-a-Cell” (CIC) scheme is a better approximation to the force: it distributes

every particle over the nearest 8 grid cells, and then weigths them by the overlapping

volume, which is obtained by assuming the particle to have a cubic shape of the same

volume as the mesh cells. The CIC method gives continuous forces, but discontinuous

first derivatives of the forces. A more accurate scheme is the “Triangular-Shaped-Cloud”

(TSC) method. This scheme has an assignment interpolation function that is piecewise

quadratic.

The advantage of such PM methods is the speed, because the number of operations scales

with N + Ng log (Ng), where N is the number of particles and Ng the number of mesh

points. However, the disadvantage is that the dynamical range is limited by Ng, which

is usually limited by the available memory. An sketch of a PM code can be seen in

Figure 1.14.

P3M Code:This method has two parts: A PM part which takes care of large-scale

forces, and PP part, which adds small-scale particle-particle contribution. Because of

strong clustering at late stages of evolution, PP part becomes prohibitively expensive once

large objects start to form in large numbers. One of the major problems for these codes is

the correct splitting of the force into a short-range and long-range part. The PM method

is only able to produce reliable inter particle forces down to a minimum of at least two

grid cells. For smaller separations the force can no longer be represented on the grid and

therefore it is necessary to introduce a cut-off radius re (larger than two grid cells), where

for r < re the force should smoothly go to zero. The parameter re defines the chaining-

mesh and for distances smaller than this cut-off radius a contribution from the direct PP

summation needs to be added to the total force acting on each particle. This PP force

should smoothly go to zero for very small distances in order to avoid unphysical particle-

particle scattering. This cutoff of the PP force determines the overall force resolution of a

P3M code. An sketch of this P3M method is shown in Figure 1.15 .
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Figure 1.14: Particle-Mesh method. This method superimposes a regular grid over the set
of particles, and creates an approximation of the original problem by moving particles to the
nearest grid points. Taken from http://www.cs.berkeley.edu/˜demmel/cs267/

lecture16/lecture16.html.

TREE Code:It is the most flexible code in the sense of the choice of boundary
contidions. It is also more expensive than PM: it takes 10-50 times more operations. The
method of the tree algorithm consist in solving the N -body problem with a hierarchical
multipole expansion. This method groups distant particles into larger cells, allowing their
gravity to be accounted for by means of a single or many multipole force terms. Instead
of requiring N − 1 partial force evaluations per particle, as needed in a direct-summtion
approach, the gravitational force on a single particle can be computed with substantially
fewer operations, because distant groups are treated as “macro” particles in the sum. In
this manner the sum usually reduces to N log (N) operations.This scaling is only true for
homogeneous particle distributions. An schematic illustrations of a tree code is shown in
Figure 1.16.
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1.6 Cosmological Simulations of Formation of Structures

Figure 1.15: Distribution of grid refinements placed with a particular kind of
P3M method. Taken from http://www.cs.berkeley.edu/˜demmel/cs267/

lecture16/lecture16.html.

Figure 1.16: Schematic illustration of a kind of Tree code, called Barnes and Hut approxi-
mation. The particles are first enclosed in a square (root node). This square is then iteratively
subdivided into four squares of half the size, until exactly one particle is left in each final
square (leaves of the tree). In the resulting tree structure, each square can be the progenitor of
up to four siblings. Taken from [6].
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“ Where are we? Who are we?
We find that we live on an insignif-
icant planet of a hum-drum star lost
in a galaxy tucked away in some
forgotten corner of a Universe in
which there are far more galaxies
than people.”

Carl Sagan.

CHAPTER

2
Construction of the Maps of

Density Fluctuation,
Gravitational Potential and

Time Derivative of the
Gravitational Potential

In this chapter, we are going to describe the methods used for the construction of the

density maps, the potential maps and the time derivative of the potential maps. In order

to obtain such maps, we used the Fourier techniques and the Fast Fourier Transform

using the FFTW1 library to deal with discrete data. More developed theory of the Fourier

Transforms and discrete Fourier Transforms can be found in [19], which is our guide

textbook for this chapter.

1http://www.fftw.org/
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2. CONSTRUCTION OF THE MAPS OF DENSITY FLUCTUATION

2.1 Fourier Transform

2.1.1 Analytical Development

A physical process can be described in the time domain t, by the values of some quantity

h as a function of t, e.g. h(t), or else in the frequency domain f , where the process

is specified by giving its amplitude H . In general H is a complex number that also

indicates the phase and is expressed as a function of frequency f , that is H(f) with

−∞ < f < ∞. For many purposes it is useful to think of h(t) and H(f) as being

two different representatios of the same function. One goes back and forth between two

representations by means of the Fourier Transform (FT) equations:

H(f) =

∫ ∞
−∞

h(t) e−2πift dt (2.1)

h(t) =

∫ ∞
−∞

H(f) e2πift df (2.2)

If the time is measured in seconds [t] = s, then the frequency is measured in cycles per

second or Hertz, [f ] = Hz. It must be remarked that the definition in the sign convention

in the exponential of both equations is not important meanwhile it would be maintained

in all the transforms. In particular, in our computational implementation with the FFTW

library for the programming language C the convention for the direct transform is the

same shown in Equation 2.1 and the inverse transform is the same as in Equation 2.2. For

instance, in other textbooks like [19] the convention is e2πift for the direct transform and

e−2πift for the inverse.

We can use the relation between angular frequency ω and the frequency f : ω = 2πf ⇒
H(ω) = [H(f)]f=ω/(2π). Equation 2.1 and Equation 2.2 become:

H(ω) =
1√
2π

∫ ∞
−∞

h(t) e−iωt dt (2.3)

h(t) =
1√
2π

∫ ∞
−∞

H(ω) eiωt dω (2.4)

The normalization convention also depends on the application, and the important issue

is to be maintained along all the transform processes. In later sections we will discuss in

detail all the conventions used in our implementation with the FFTW library.

From Equation 2.1, it is evident at once that Fourier transformation is a linear operation:
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2.1 Fourier Transform

• The transform of the sum of two functions h(t) and g(t) is equal to the sum of the

transforms:

1√
2π

∫ ∞
−∞

(h(t) + g(t)) e−iωt dt =
1√
2π

∫ ∞
−∞

h(t) e−iωt dt (2.5)

+
1√
2π

∫ ∞
−∞

g(t) e−iωt dt

• The transform of a constant C times a functions h(t) is the same constant times the

transform of the function:

1√
2π

∫ ∞
−∞

C h(t) e−iωt dt =
C√
2π

∫ ∞
−∞

h(t) e−iωt dt (2.6)

Table 2.1 gives correspondences between symmetries in the two domains.

If Then

h(t) is real H(−f) = [H(f)]∗ = H∗(f)

h(t) is imaginary H(−f) = −H∗(f)

h(t) is even H(−f) = H(f) (H(f) is even)
h(t) is odd H(−f) = −H(f) (H(f) is odd)

h(t) is real and even H(f) is real and even
h(t) is real and odd H(f) is imaginary and odd

h(t) is imaginary and even H(f) is imaginary and even
h(t) is imaginary and odd H(f) is real and odd

Table 2.1: Symmetries of the Fourier transform

Other important propeties of the Fourier tranform can be found in more detail in [19],

[1] and [22].

With two functions h(t) and g(t), and their corresponding Fourier transforms H(f)

and G(f), we can form two combinations of special interest: the convolution and the

correlation.
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2.1.1.0.1 Convolution:

The convolution of the two functions, denoted g ∗ h is defined by:

g ∗ h ≡
∫ ∞
−∞

g(τ)h(t− τ) dτ (2.7)

g ∗ h is a function in the time domain, and g ∗ h = h ∗ g. We define the Convolution
Theorem, which allow us to find the product of F (f) G(f) with the transform of the
convolution g ∗ h:

1√
2π

∫ ∞
−∞

(g(t) ∗ h(t)) e−iωt dt =
1√
2π

∫ ∞
−∞

g(t) e−iωt dt× 1√
2π

∫ ∞
−∞

h(t) e−iωt dt

= H(f)G(f) (2.8)

2.1.1.0.2 Correlation and Autocorrelation:

We can also define the correlation of two functions as:

Corr(g, h) ≡
∫ ∞
−∞

g(τ + t)h(τ)dτ (2.9)

And the Correlation Theorem as:

1√
2π

∫ ∞
−∞

Corr(g, h) e−iωt dt = G(f)H(−f) (2.10)

The correlation of a function h(t) with itself is called autocorrelation. The Wiener-
Khinchin theorems allow us to relate the autocorrelation of a function with the squared
modulus of its Fourier transform:

∫ ∞
−∞

Corr(h, h) e−iωt dt = |H(f)|2 (2.11)

The convolution, correlation and autocorrelation are sketched in Figure 2.1. From
this figure, one can see that a correlation determines the degree of similarity between two
signals. If the signals are identical, then the correlation coefficient is 1; if they are totally
different, the correlation coefficient is 0, and if they are identical except that the phase is
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shifted by exactly 180o (i.e. mirrored), then the correlation coefficient is -1. When two
independent signals are compared, the procedure is known as cross-correlation, and when
the same signal is compared to phase shifted copies of itself, the procedure is known
as autocorrelation (see http://coral.lili.uni-bielefeld.de/Classes/

Summer96/Acoustic/acoustic2/).

Figure 2.1: Sketchs of convolution (on the right), correlation or cross-correlation (at the cen-
ter) and autocorrelation (on the left). Taken from http://en.wikipedia.org/wiki/

Convolution.

We can define the total power of a signal which is the same quantity whether we
compute it in the time domain or in the frequency domain. This result is known as the
Parseval’s Theorem.

Total Power =

∫ ∞
−∞
|h(t)|2 dt =

∫ ∞
−∞
|H(f)|2 df (2.12)

To know “how much power” is contained in the frequency interval between f and
f + df , one does not usually distinguish between positive and negative frequency f , but
rather regards f as varying from 0 (“zero frequency” or D.C.) to +∞. Then, we define
the one-sided power spectral density (PSD) of the function h as:

Ph(f) = |H(f)|2 + |H(−f)|2; 0 ≤ f < +∞ (2.13)

If h(t) is a real function, the PSD becomes Ph(f) = 2|H(f)|2. The total power is
the integral of Ph(f) from f = 0 to f = +∞. The PSD can also be defined without
the factor 2 and it is called two-sided power spectral density. We will continue using the
one-sided PSD.
If the funtcion h(t) goes endlessly from −∞ < t < +∞, then both, the total power and
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2. CONSTRUCTION OF THE MAPS OF DENSITY FLUCTUATION

power spectral density will be, in general, infinite.

2.1.1.1 One-Sided Power Spectran Density per Unit Time

The one-sided PSD is computed by taking a long but finite stretch of the function h(t),
computing its PSD (that is, the PSD of a functions that equals h(t) in the finite stretch but
is zero everywhere else), and then dividing the resulting PSD by the length of the stretch
used. In this case, Parseval’s theorem states that the integral of the one-sided PSD-per-
unit-time over positive frequency is equal to the mean square amplitude of the signal h(t).

The PSD-per-unit-time converges to finite values at all frequencies except those
where h(t) has a discrete sine-wave (or cosine-wave) component of finite ampli-
tude. At those frequencies it becomes a Dirac’s delta-function, but whose area converges
to be the mean square amplitude of the discrete sine (cosine) component at that frequency.

2.1.2 Fourier Transform of Discretely Sampled Data
In computational work, especially with experimental data, we are almost never given a
continuous functions h(t) to work with, but are given, rather, a list of measurements of
h(ti) for a discrete set ti’s. The function h(t) can be sampled at evenly spaced intervals
in time. If ∆ denotes the time interval between consecutive samples, so that the sequence
of sampled values is:

hn = h(n∆); n = ...,−3,−2,−1, 0, 1, 2, 3, ... (2.14)

The reciprocal of the time interval is called the sampling rate. If ∆ is measured
in seconds ([∆] = s), then the sampling rate is the number of samples recorded per second.

2.1.2.1 Sampling Theorem and Aliasing

For any sampling interval ∆ there is a critical frequency called Nyquist critical frequency,
given by:

fc =
1

2∆
(2.15)
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The Nyquist frequency is the highest frequency that can be coded at a given sampling
rate in order to be able to reconstruct the signal. For example, critical sampling of a sine
wave is two sample points per cycle, one at the positive peak and the other at the negative
trough. It’s frequent to choose to measure time in units of the sampling interval ∆. In
this cases the Nyquist critical frequency is constant: fc = 1/2. The Nyquist frequency is
important for two related reasons, which we will discribe:

1. Sampling Theorem: If a continuous function h(t), sampled at an interval ∆, hap-
pens to be bandwith limited to frequencies smaller in magnitude than fc, i.e., if
H(f) = 0 ∀ |f | ≥ fc, then the function h(t) is completely determined by its sam-
ples hn:

h(t) = ∆
+∞∑

n=−∞

hn
sin [2πfc(t− n∆)]

π(t− n∆)
(2.16)

It is important to remark that the “information content” of a bandwith limited func-
tion is infinitely smaller than that of a general continuous function.

2. When one is sampling a continuous function that is not bandwith limited to less
than the Nyquist critical frequency, it turns out that all of the power spectra density
(PSD) that lies outside the frequency range −fc < f < fc is spuriously moved into
that range. This phenomenon is called aliasing. Any frequency component outside
the frequency range (−fc, fc) is aliased (falsely translated) into that range by the
very act of discrete sampling. But the way to overcome aliasing is to: (i) know the
natural bandwith limit of the signal or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present.

2.1.2.2 Discrete Fourier Transform (DFT)

We are going to estimate the Fourier transform of a function from a finite number of its
sampled points. Let’s suppose that we have N consecutive sampled values:

hk = h(tk); tk = k∆; k = 0, 1, 2, ..., N − 1 (2.17)

Where ∆ is the sampling interval and we are going to suppose that N is even. If h(t)

is non-zero only in a finite interval of time, then that whole interval of time is supposed
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Figure 2.2: The continuous function shown in (a) is a nonzero only for a finite interval of
time T . It follows that its Fourier transform, whose modulus is shown schematically in (b), is
not bandwidth limited but has a finite amplitude for all frequencies. If the original function is
sampled with a sampling interval ∆, as in (a), then the Fourier transform (c) is defined only
between plus and minus the Nyquist critical frequency. Power outside that range is folded
over or “aliased” into the range. The effect can be eliminated only by low-pass filtering the
original function before sampling. Figure taken from [19].

to be contained in the range of N points given. If the function h(t) goes on forever, then

the sampled points are supposed to be at least “typical” of what h(t) looks like at all over

times.

With N inputs, we will be able to produce no more than N independent numbers of

output. So, instead of trying to estimate the Fourier transform H(f) at all values of f in

the range −fc to fc, let us seek estimates only at the discrete values.

fn =
n

N∆
; n = −N

2
, ...,

N

2
(2.18)

Extreme values of n correspond to the lower and upper limits of the Nyquist critical

frequency range. In Equation 2.18 there are N + 1 values of n, but the extreme values

of n are equal, reducing the count to N . Now, we have to approximate the integral in

Equation 2.1 by a discrete sum:
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2.1 Fourier Transform

H(fn) =
1√
2π

∫ +∞

−∞
h(t) e−2πifnt dt ≈ 1√

N

N−1∑
k=0

hk e
−2πifnt∆

≈ ∆√
N

N−1∑
k=0

hk e
−2πink∆/(N∆)

≈ ∆√
N

N−1∑
k=0

hk e
−2πink/N (2.19)

Where we have used both equations, Equation 2.17 and Equation 2.18. Equation 2.19
is called the Discrete Fourier Tranform (DFT) of the N points hk. Denoting:

Hn =
1√
N

N−1∑
k=0

hk e
−2πink/N (2.20)

The DFT map N complex numbers hk’s into N complex numbers Hn’s. The relation
in Equation 2.19 between DFT of a set of numbers and their continuous Fourier transform
when they are viewed as samples of a continuous functions sampled at an interval ∆ can
be rewritten as:

H(fn) ≈ ∆Hn (2.21)

With fn given by Equation 2.18. We have taken the view that the index n in
Equation 2.20 varies from −N/2 to N/2, as in Equation 2.18. However, Equa-
tion 2.20 is periodic in n, with period N . Therefore, we make use of the property
H−n = Hn; n = 1, 2, .... One generally let the n in Hn vary from 0 to N − 1, i.e., one
complete period. Then, n and k (in hk) vary exactly over the same range, so the mapping
of the N numbers into N numbers is manifest. When this convention is followed, the
zero frequency corresponds to n = 0; positive frequencies 0 < f < fc correspond to
values 1 ≤ n ≤ (N/2) − 1, while negative frequencies −fc < f < 0 correspond to
(N/2) + 1 ≤ n ≤ N − 1. The value n = N/2 correspond to both f = fc and f = −fc.

Discrete Fourier transform has symmetry properties almost exactly the same as the
continuous Fourier transform. For example all the simetries in Table 2.1 hold if we read
hk for h(t), Hn for H(f), and HN−n for H(−f). Likewise, “even” and “odd” in time
refer to whether the values hk at k and N − k are identical or the negative or each other.
Table 2.2 show how are those simetries for the discrete case.
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If Then

hk is real HN−n = H∗n
hk is imaginary HN−n = −H∗n
hk = hN−k HN−n = Hn

hk = −hN−k is odd HN−n = −Hn

hk is real and hk = hN−k Hn is real and HN−n = Hn

hk is real and hk = −hN−k Hn is imaginary and HN−n = −Hn

hk is imaginary and hk = hN−k Hn is imaginary and HN−n = Hn

hk is imaginary and hk = −hN−k Hn is real and HN−n = −Hn

Table 2.2: Symmetries of the Discrete Fourier transform

The formula for the discrete inverse Fourier transform, which recovers the set of hk’s

exactly from Hn’s is:

hk =
1√
N

N−1∑
n=0

Hn e
2πikn/N (2.22)

While the discrete form of the Parseval’s theorems reads:

N−1∑
k=0

|hk|2 =
N−1∑
n=0

|Hn|2 (2.23)

A routine for calculating DFT can also calculate the inverse transforms with a slight

modification in the sign of the exponential.

2.2 Fast Fourier Transform (FFT) with FFTW C-Library

2.2.1 General Background

A Fast Fourier Transform (FFT) is a routine that computes a discrete Fourier transform

(DFT). The computational cost of computing the N data points in the Fourier space via

Equation 2.19 is O(N2), but the computational cost of a FFT is, in the best cases, of

order O(N log2N) operations, and in the worst cases, the same as the previous one.

Respect to computational time, a FFT works better when the number of data points N

is a power of 2 and it works badly when N is a prime or it has as divisor big primes.

In our computational work, we have used the version 3.3.3 of FFTW, or the Fastes
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2.2 Fast Fourier Transform (FFT) with FFTW C-Library

Fourier Transform in the West. FFTW is a comprehensive collection of fast C routines
for computing the DFT and various special cases thereof.

FFTW does not use a fixed algorithm for computing the transform, but instead it
adapts the DFT algorithm to details of the underlying hardware in order to maximize
performance. Hence, the computation of the transform is split into two phases. First,
FFTW’s planner “learns” the fastest way to compute the transform in the machine.
The planner produces a data structure called a plan that contains this information.
Subsequently, the plan is executed to transform the array of input data as dictated by
the plan. The plan can be reused as many times as needed. In typical high-performance
applications, many transforms of the same size are computed and, consequently, a
relatively expensive initialization of this sort is acceptable. On the other hand, if one need
a single transform of a given size, the one-time cost of the planner becomes significant.
For this case, FFTW provides fast planners based on heuristics or on previously computed
plans [8].

2.2.1.1 What FFTW Computes

Here we present what FFTW computes and the conventions for the normalization and the
sign of the complex exponent used by the FFTW library [8], [7].

2.2.1.1.1 The 1D Discrete Fourier Transform:

The forward DFT of a 1 dimensional (1D) complex input array hk of size N computes an
output array Hn, where:

Hn =
N−1∑
k=0

hke
−2πikn/N (2.24)

It is denoted FFTW_FORWARD in the FFTW routine. The inverse DFT, denoted as
FFTW_BACKWARD, of the input array hk computes:

Hn =
N−1∑
k=0

hke
2πikn/N (2.25)

FFTW computes an unnormalized transform, in that there is no coefficient in front of
the summation in the DFT. In other words, applying the forward and then the backward
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2. CONSTRUCTION OF THE MAPS OF DENSITY FLUCTUATION

transform will multiply the input by N . From above, an FFTW_FORWARD transform

corresponds to a sign of (−1) in the exponent of the DFT and FFTW_BACKWARD

transform corresponds to a sign of (+1). For ease, we only describe the relations for

complex inputs, because it is the kind of inputs used in our implementation. For a de-

tailed description for other methods of FFT, such as DFT of real input data, please see [8].

2.2.1.1.2 Multi-dimensional Transforms:

The multi-dimensional transforms of FFTW, in general, compute simple the separable

product of the given 1D transform along each dimension of the array. Since each of these

transforms is unnormalized, computing the forward followed by a backward/inverse

multi-dimensional transform will result in the original input array scaled by the product

of the normalization factors of each dimension, e.g. the product of the dimension sizes

for a multi-dimensional DFT, which is our case.

Let’s consider the following exact mathematical definition of our multi-dimensional

DFT. Let h be a d-dimensional complex array whose elements are h[k1, k2, ..., kd] where

0 ≤ ks ≤ Ns for all s ∈ {1, 2, ..., d}. Let also ωs = e2πi/Ns for all s ∈ {1, 2, ..., d}. The

forward transform computes a complex array H , whose structure is the same as that of h,

defined by:

H[n1, n2, ..., nd] =

N1−1∑
k1=0

N2−1∑
k2=0

· · ·
Nd−1∑
kd=0

h[k1, k2, ..., kd]ω
−k1n1
1 ω−k2n2

2 · · ·ω−kdnd
d (2.26)

The backward transform computes

H[n1, n2, ..., nd] =

N1−1∑
k1=0

N2−1∑
k2=0

· · ·
Nd−1∑
kd=0

h[k1, k2, ..., kd]ω
k1n1
1 ωk2n2

2 · · ·ωkdnd
d (2.27)

Computing the forward transform followed by the backward transform will multiply

the arrays by
∏d

s=1Ns.

As in our work we need only 3D transforms, the forward or direct transform will be

given by:
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2.3 Fourier Analysis of the Density Field

H[ni, nj, nk] =

Ng−1∑
i=0

Ng−1∑
j=0

Ng−1∑
k=0

h[i, j, k]ω−ini
i ω

−jnj

i ω−knk
k (2.28)

Where i, j, k represent the x, y and z-axis, respectively, and 0 ≤ i, j, k ≤ Ng, with
Ng representing the number of data points in each axis, which in our case, is the same
for all directions; ni, nj, nk represent the reciprocal points of i, j, k, and varying as
0 ≤ ni, nj, nk ≤ Ng. As Ng is the same for all directions, the factors ωi, ωj, ωk are
the same and equal to e2πi/Ng . Then, we will have one value of H for a triad (ni, nj, nk).
Finally, the backward or inverse transform will be given by:

H[ni, nj, nk] =

Ng−1∑
i=0

Ng−1∑
j=0

Ng−1∑
k=0

h[i, j, k]ωini
i ω

jnj

i ωknk
k (2.29)

2.3 Fourier Analysis of the Density Field
In this section we are going to describe the analitical processes to obtain the density field,
the potential and its time derivative in a general way. Also we are going to explain the
numerical and computational methods used to calculate these quantities for our data and
a brief explanation about the use of the FFTW library.

2.3.1 Nearest Grid-Point Algorithm
The Nearest Grid Point (NGP) algorithm was briefly described in subsection 1.6.2 in the
PM code. Here, we will describe the NGP algorithm in our work.

As seen in subsection 1.6.2, the NGP algorithm is one of the schemes to assign the
mass of a simulation mesh. We have used the results of a N -body simulation with the
GADGET code1. This simulation gives as result a serie of snapshots for different redshift
z, with the proper positions and peculiar velocities of the particles in a cubic box of
400h−1 Mpc size ,i.e., a volume of 4003h−3 Mpc3, and a total number of particles equal
to 5123. Each particle has a mass of 3.41454 × 1010 M�. In this simulation, periodic
boundary conditions were used. Those and other characteristics of the simulation are
given in Table 2.3.

1The results of this simulation were provided by my advisor Juan Carlos Muñoz Cuartas.
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Quantity Value

Box size L 400h−1 Mpc
Ωm,0 0.258

ΩΛ,0 0.742
Hubble’s parameter h 0.72

Hubble’s constant at present time H0 100h 1
s

Total number of particles 5123

Mass unit 1× 1010h−1 M�
Particle mass 3.41454× Mass unit

Mean matter density ρ 7.160809× 1010h−2 M�Mpc−3

Lenght unit 1h−1 Mpc
Gravitational constant G in the internal units 43.0071

Table 2.3: Information of the N -body simulation used.

To read the results from the N -body simulation, it is necessary to read from a binary

format which GADGET uses to save the data files. As those files have an approximate

size of 4 - 5 GB, it is necesary to use the MPI library in order to read the data with more

than one CPU and make a more efficient use of the computing time1. Once the positions

and velocities of each particle was read from the GADGET file, we recalculate the size

of the cubic box and create a grid with the same number of cells per axis. The number of

cells per axis Ng depends on the desired resolution; we have used tree different values for

Ng: 64, 128 and 256. A better resolution Ng = 512 was desired, but the computational

power and time needed is too high, and a resolution of Ng = 256 is enough to visualize

the SW effect; better resolution would allow to visualize higher-order anisotropies such

as the Rees-Sciama effect. This last effect is not of our interest, but we have used some

methods and relations obtained by [4] and [20] whom have studied the Rees-Sciama

effect, to find important physical quantities as the gravitational potential and its time

derivative.

First, a grid must be constructed. We assign a certain position (x, y, z) to

each cell, that will be the central point of the cell, i.e., if a cell is placed between

(xmin, ymin, zmin) and (xmax, ymax, zmax), the cell point which charaterizes this cell will

1Even reading those files in 30 CPU’s, the results that we need can be obtained over a week later. As we
will show, we used three different resolutions. The with the lowest resolution, the computing time is about
one day, the next high resolution takes over 3 days to be read and the best resolution takes approximately
one week or more. Then, reading such files with only one CPU could take even months.
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2.3 Fourier Analysis of the Density Field

be (xcm = (xmin + xmax)/2, ycm = (ymin + ymax)/2, zcm = (zmin + zmax)/2), and
xmax = xmin + ∆x, being ∆x the cell size and xcm the position in the x-axis of the center
of the cell and so on. All this values are stored for a future use.

Once the grid is constructed and the grid points located, we proceed to fill the grid
with the particles and assign them to each cell. To see how it works, let’s see an example:
we read the position in each direction of a certain particle: xp, yp, zp; then, we first take
the component xp and see if this value is between the stored positions xmin and xmax of a
certain cell. We do the same for the y and z components in this order. If the particle is
inside the cell, then its mass is assigned to the cell and stored in memory. The velocities
of the particles in each direction are also assigned to the cell in order compute the center
of mass velocity of the cell. When another particle is inside the same cell, its mass is also
assigned to this cell, and the total mass of the cell increases in this value, i.e., the mass of
this last particle is added mathematically to the mass stored in this cell. The velocity of
the center of mass is computed as the average velocity of all the particles in the cell, and
in each direction.

When this step is ready for all the particles, the volume of each cell is calculated.
This is made only one time, because all cells have the same sizes along each axis and
then, the same volume. With this value of volume and with the total mass enclosed in
each cell, it is easy to calculate the density of each cell and store this value, or even,
calculate directly the density contrast ∆(r) in the respective cell and store this last value.
It is important to emphazise that the particles have an ID to identify each one from the
other ones. The order to assign the ID to each particle is the same order of reading from
the GADGET file for each particle; this ID is stored for a future use. This is the NGP
algorithm implemented in our study. Let’s summarize this explanation in the flow chart
given in Figure 2.3.

2.3.2 Grid Construction
Here, we are going to explain in a more detailed way the construction and filling of the
grid in a computational point of view. It is clear that we are using the programming
language C, and we will give our explanation based on it.

When we constructed the grid, we used three for cycles. The first for is for the
z axis and is characterized by the index k. The second for is for the y axis and is
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Figure 2.3: Flow chart sumarizing the creation and filling of the grid.

characterized by the index j and the last for cycle is for the x axis and is characterized

by the index i. All indices of the for cycles go from zero to the number of cells Ng, that

means 0 ≤ i, j, k < Ng, for Ng = 64, 128, 256.

Now, we define a cell size which will be equal to the ratio between the size of one axis of

the simulation box, L = 400 Mpch−1, and the number of grid cells in one axis, Ng, i.e.:

Cell Size =
L

Ng

(2.30)

This step can be understood as taking a plane for fixed z, then, a line for fixed y in
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this plane, and in this line we place the points for all the x values; then, we do the same

for the following value of y, and so on until the fixed plane z is constructed. We pass to

the next value of z and do the same until all the grid with shape of a cubic box is created.

Finally, an ID (henceforth GP ID) is given to each cell in the order of construction. In this

order, a simple relation can be found for the value of GP ID. For simplicity in our codes,

the GP ID is called m.

GP ID = m = (kny + j)nx + i (2.31)

Where nx, ny are the number of cells in the x and y-axis, respectively, and both are

equal to Ng, i.e., nx = ny = Ng. And i, j, k are the indices used in the for cycles

previously described for the x, y and z axis, respectively. That means, the GP ID is given

by the order of construction of the grid and the respectively position of the cell.

Once the grid is constructed as explained, the grid is filled with the particles, as described

in subsection 2.3.1. Figure 2.4 shows how this grid has been constructed. From this

figure, it is possible to see a sketch of a plane for fixed value of z = 0.0 and in this plane,

different values of y, which indicates different lines. Along each of these lines, we put

the values of x which will define the maximum and minimum values (xmin and xmax,

respectively) of each cell. With this two values we calculate the position of the center

of the cell in the x-axis. In this diagram is easy to see how for the values of the indices

i = j = k = 0 we obtain an ID m = 0 for the first cell. For j = k = 0 and i = 1 we

obtain the ID m = 1 for the second cell and so on. When the iterations in the x-axis

finish, we pass to the next value of j = 1 and perform the same steps. With this value

of j the first cell in this line will have indices i = k = 0 and j = 1, and its ID will be

m = ((0)ny + 1)nx + 0 = nx = Ng. The second cell has indices i = j = 1 and k = 0,

then its ID will be m = Ng + 1.

It is important to take into account that the order used in the FFTW library to construct

a discrete grid is different from the order used by us, because we need to pass the data

ordered with ID m to the default order of the FFTW, which we are going to show sooner.

As seen previously, a numerical Fourier transform must be performed with discrete val-

ues, that’s the reason why we need to construct another grid in which will be stored the

information read before the construction of the grids from the GADGET file. This new

grid should be constructed taking first a plane for fixed x, then we take a fixed y and put

finally all the values of z in this line y. Then, we pass to another fixed value of y and do
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Figure 2.4: Sketch of the grid construction for the reading of particle’s position from the
GADGET file. The ID’s of the cells are given by the relation m = (kny + j)nx + i. This
relation tell us that the most rapidly varying index is i (representing the x− axis), while the
slowest varying index is k (which represents the z-axis).

the same until all the x plane is filled. Finally, passing to another x coordinate, we con-

struct the new grid. This is performed with the help of for cycles, as the previously grid,

but beginning with a for in the index i, representing the x-axis, later a for cycle in j

representing the y-axis and finally a for in k, which represents the z-axis. This means

that the most rapidly varying index is k and the slowest varying index is i. In this new

grid, the ID of each cell changes. We find that the correct way to assign and ID, called p

to the cells if the grid is constructed in this last way is the following:

p = (iny + j)nz + k (2.32)

Where i, j, k represent the indices of the for cycles for the x, y and z-axis respec-

tively and ny, nz are the number of cells in the y and z-axis, respectively. As before,

ny = nz = Ng. Given this situation, we need to identify the two different ID’s that

characterizes the same cell in both grids when we perform a FFT. In both grids, a cell

will have the same coordinates (i, j, k), but the ID’s will be given by Equation 2.31 and

Equation 2.32, then we perfom a transform between both ID’s identification. Figure 2.5

shows the grid construction with the described method for the FFTW. In this figure is

possible to see again the assignation of the ID of the cells. as follows: in a plane for fixed

value of x = 0 it is possible to see in this plane, different values of y, which indicates

different lines. Along each of these lines, one put the values of z which will define the
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maximum and minimum values (zmin and zmax, respectively) of each cell. With this two

values we calculate the position of the center of the cell in the z-axis. In this diagram is

easy to see how for the values of the indices i = j = k = 0 we obtain an ID p = 0 for the

first cell. For i = j = 0 and k = 1 we obtain the ID p = 1 for the second cell and so on.

When the iterations in the z-axis finish, we pass to the next value of j = 1 and perform

the same steps. With this value of j the first cell in this line will have indices i = k = 0

and j = 1, and its ID will be p = ((0)ny + 1)nz + 0 = nz = Ng. The second cell has

indices j = k = 1 and i = 0, then its ID will be m = Ng + 1.

Figure 2.5: Sketch of the grid construction for the sorting of data input for the FFTW library.
The ID’s assignment follows the relation: p = (iny + j)nz + k. This relation tell us that the
most rapidly varying index is k (representing the z − axis), while the slowest varying index
is i (which represents the x-axis).

2.3.3 Density Fluctuation Fields ∆(r) and ∆(k)

In order to obtain the fluctuation density field numerically, we need to compute the density

contrast (Equation 1.51). Let’s remember its definition:

∆(x) =
ρ(x)− ρ

ρ
(2.33)
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With the density contrast computed in the real space ∆(r), we performed a Fourier

transform to find the density contrast in the Fourier space ∆(k), known also as the recip-

rocal space or the k-space. In order to estimate ∆(k) correctly, first it was calculated the

Fourier transform of ∆(r), called ∆g(k), and each resulting mode was corrected with the

mass-assignment windows function. For the NGP algorithm which is the one used in our

implementation, this corresponds to:

∆d(k) = ∆g(k)/WNGP(k) (2.34)

Where:

WNGP =
∏

i=1,2,3

{
sin [πki/(2kNy)]

[πki/(2kNy)]

}
(2.35)

The subscript d and g denote discrete and grid quantities, and kNy = πNg/L is the

Nyquist frequency, and Ng is the number of grid cells.

To obtain the density fluctuation field ∆(r) of each cell, we need to compute

Equation 2.33 with the data after the NGP algorithm. The process to find the density

contrast is the same for all snapshots, regardless the redshift z.

When the grid is finally constructed, we used the Nearest Grid-Point (NGP) method

described in subsection 2.3.1 to calculate the mass enclosed in each cell, and with the

volume of the cell, we calculate the density contained in the cells. With this last quantity

computed, we can obtain the density contrast (Equation 2.33). The mean density of the

Universe ρ is easily calculated and is the same regardless the value of Ng: ρ = Nm/V ,

where N is the number of particles, m is the mass of each particle and V is the total

volume of the simulation box.

With the density contrast assigned to each cell, and with the ID calculated from

Equation 2.31 is easy to identify all the data from each cell: position, velocity of the

center of mass and density contrast. We are ready to calculate the density contrast in

the Fourier space: ∆g(k). Recalling that the FFTW library has its own order given by

Equation 2.32, we need to make a correct assignment of the density contrast to the new

grid in order to calculate its Fourier transform.

66



2.3 Fourier Analysis of the Density Field

The way to store all data from the grid points is through a data structure. A

structure (or struct in C syntax), is a complex data type declaration that de-

fines a physically grouped list of variables to be placed under one name in a

block of memory, allowing the differente variables to be accessed via a single

pointer, or the struct declared name which returns the same address (see http:

//en.wikipedia.org/wiki/Struct_(C_programming_language)).

With this in mind, we can make a pseudocode in order to understand the assignment of

the density contrast to the input array of the FFTW.

First, we need to declare and create the arrays that correspond to the input and output

of the FFT. Despite the density contrast ∆(r) is a real quantity, we used a complex to com-

plex transform, that means, we supposed that both input and output arrays are composed

by complex numbers. Obviously the imaginary part of the input array is set to be zero. We

choose to make complex to complex transforms because the easiness in the interpretation

and extraction of data from the output array. If the transforms are made for real input, the

output array will have some symmetry properties which must be very well understood in

order to extract the correct output element, a very complicated process for inexperienced

people whom uses the FFTW library by first time. It should be also considered that the

manual of the FFTW library is not very explicit and is not easy to understand and find

some important properties needed in the computational area. That’s a reason for us to be

as explicit as possible in show, at least, how to make the complex to complex transform

and compute properties of the reciprocal grid, such as the wavevector components. Back

to what concern us, creation of the input and output arrays for the FFT in C is made as

follows:

fftw_complex *in=NULL;

fftw_complex *in2=NULL;

fftw_complex *out=NULL;

The arrays declared here are of type fftw_complex which is by default an array

of two elements of double precision: double[2] composed of a real (in[i][0])

and imaginary (in[i][1]) parts of a complex number. Here we define the input array

in[][], the output array out[][] and a final array in2[][] which will be the

output of the inverse FFT (the input array of an inverse FFT is out[][]). This array

in2[][] is used to compare with in[][] in order to verify that the FFT’s have been
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correctly performed.

The next step is to declare and create the plan used by FFTW. A plan is an object
that contains all the data that FFTW needs to compute the FFT.

fftw_plan plan_r2k;

fftw_plan plan_k2r;

Where plan_r2k refers to a forward FFT, i.e., with a -1 sign in the exponential and
plan_k2r refers to the inverse FFT, with a sign +1 in the exponential.
Once the arrays and the plans are declarated, we need to allocate memory for the ar-
rays. For such step FFTW has its own way to allocate memory with the function
fftw_malloc, which behaves like malloc of C, but is more recomended. Such allo-
cation is made as follows:

in = (fftw_complex *) fftw_malloc( sizeof( fftw_complex )

*nx*ny*nz );

out = (fftw_complex *) fftw_malloc( sizeof( fftw_complex )

*nx*ny*nz );

Where nx, ny, nz must have been declarated before and equal to Ng. Now, with the
memory allocated, we can begin to sort the density contrast array from the first grid order
m, to the FFTW order p. Taking into account the order of the FFTW, we need to perform
first a for cycle in i (representing the x-axis), second a for cycle in j (representing the
y-axis) and finally a for cycle in k (representing the z-axis), as shown in the following
pseudocode:

nx = ny = nz = Number of grid cells

for (i=0; i<nx; i++)

{

for (j=0; j<ny; j++)

{

for (k=0; k<nx; k++)

{

p = (i * ny + j) * nz + k;
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m = (k * ny + j) * nx + i;

in[p][0] = Density_Contrast_of_cell_[m];

in[p][1] = 0.0

}

}

}

Now that the input array is in memory, we need to give to the plans declarated the

respective inputs in order to perform the FFT. A plan needs as inputs the dimension (or

dimensions if the FFT is of dimensions higher than 1), the input array which will be

transformed, the ouput array in which the transformed data will be stored, the sign of the

transform indicating if it will be a forward (-1) transform of backward (or inverse with

sign +1) transform, and finally a flag. As an example, for one dimension:

fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in,

fftw_complex *out, int sign,

unsigned flags);

Here the dimension is given by an integer n, the input array in[][] is de-

clared as a fftw_complex number, as seen before and the same for the output

array called out[][]. The integer sign depends if the transform is forward or

backward. One can put this flag either -1 or FFTW_FORWARD for a forward trans-

form or either +1 or FFTW_BACKWARD for a backward or inverse transform. Re-

spect to the unsigned flags, this argument is usually either FFTW_MEASURE or

FFTW_ESTIMATE. FFTW_MEASURE instructs FFTW to run and measure the execution

time of several FFTs in order to find the best way to compute the transform of size n.

FFTW_ESTIMATE, on the contraty, does not run any computation and just builds a rea-

sonable plan that is probably sub-optimal. In our case, as our transforms are performed

over a cubic grid, we need to compute a 3D complex-to-complex transform, which we

define as follows:

planr2k = fftw_plan_dft_3d(nx, ny, nz, in, out,

FFTW_FORWARD,

FFTW_ESTIMATE);
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The FFTW library has several routines to define a plan. It has a complex 1D

DFT given by the plan fftw_plan_dft_1d, a 2D and 3D complex DFT given by

fftw_plan_dft_2d and fftw_plan_dft_3d and a general dimensional complex

DFT given by:

fftw_plan_dft(int rank, const int *n, fftw_complex *in,

fftw_complex *out, int sign, unsigned flags);

The first entry rank refers to the number of dimensions or independent indices in the

array; for example, in our case is 3, because we have a cubic box. The second entry n

refers to an array with the same dimension of the input array, but each element in the array

n has the number of elements (or cells) in each dimension. For example, we have to make

a DFT for our data in 3 dimensions, each dimension having nx, ny and nz elements. In

this case we will suppose that the number of elements is equal nx = ny = nz = Ng = 64,

then the inputs will be:

int rank = 3;

double n[3];

n[0] = nx = 64;

n[1] = ny = 64;

n[2] = nz = 64;

For a real-to-complex and complex-to-real transforms, FFTW also has specific rou-

tines for 1D, 2D and 3D arrays and a general routine for any dimension. For more in-

formation concerning plans, please see [8], which, at least, is one of the most detailed

sections in the manual of the library. With the plan created, we perform the FFT with the

help of:

fftw_execute( plan_r2k );

With these steps, the DFT from the position space to the Fourier space is ready. If we

want to visualize or store the correct output array, we need apply a normalization to the

output array from the FFTW, that means, in our case:
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2.3 Fourier Analysis of the Density Field

norm = sqrt(nx * ny * nz);

for( p=0; p<(nx * ny * nz); p++ )

{

Real part in k space = out[p][0] / norm;

Imaginary part in k space = out[p][1] / norm;

}

The results of the DFT are stored in-order in the array out[][], with the zero-
frequency (DC) component in out[0] in the case of a 1D complex-to-complex DFT. In
the case of a real-to-complex DFT, the data are stored in a different way which is more
complicated to deal with it, because some symmetry properties must be taken into account
in order to extract all the elements of the outputs to work with them. We recomend to bet-
ter use a complex-to-complex transform with imaginary parts of the elements in the input
array equal to zero and work with the respective output, as has been done by us in this
work. In order to verify if the DFT was performed correctly, we apply an inverse Fourier
transform to the output array out[p][0], out[p][1] (without normalization). First,
we allocate in memory the array in2[][] and perform another plan:

in2 = (fftw_complex*)malloc(sizeof(fftw_complex)*nx*ny*nz);

plan_k2r = fftw_plan_dft_3d( nx, ny, nz, out, in2,

FFTW_BACKWARD, FFTW_ESTIMATE);

fftw_execute(plan_k2r);

We can see that the input array of the inverse Fourier transfom performed with the plan
plan_k2r is the output array out[][] from the first Fourier transform performed with
plan_r2k, and the output array of plank2r should be the non-normalized input array.
To visualize these new results and compare them with the initial input array in[][],
we need to apply a normalization to in2[][]. Remembering that the FFTW doesn’t
perform normalized FFT’s, we need to divide the array in2[][] by nxnynz and then
we should obtain the first input array in[][].

With all of this, once the arrays in[][] and in2[][] are compared and verified
its equality, we can now calculate the wave vectors in the reciprocal grid. After an ex-
tensive search in order to know the correct expression for the wave vectors in a discrete
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grid in the same order of the output of the FFTW, we found that the FFTW order in
the ouputs enforce the wave vector components to be calculated with the following re-
lations, in which must be taken into account that since each grid point has coordinates
(x, y, z), then, the wave vector components (kx, ky, kz), are the positions of the recip-
rocal grid given by (see http://pauli.uni-muenster.de/tp/fileadmin/

lehre/NumMethoden/SoSe10/Skript/Ordening.pdf):

kj(i) =

{
2π
L
i if i = 0, ..., N

2
2π
L

(−N + i) if i = N
2

+ 1, ..., N − 1
; j = x, y, z (2.36)

Finally, the expression of Equation 2.34 will be used to calculate the gravitational
potential and the time derivative of the potential, processes that we will describe in the
following sections. Before those steps, we can obtain the maps of the density fluctuation
from the input of the FFT. Here, we present some slices of thickness 10h−1 Mpc for the
three different values of Ng = 64, 128, 256.

From Figure 2.6, Figure 2.7 and Figure 2.8, we can see that effectively the grid with
Ng = 256 has the best resolution of all. Then, henceforth we will show and analyse
the results coming from the grid with this last resolution. In those mentioned figures
we can see some regions which can be interpreted as vacuum regions (regions in blue)
which means that the matter density here is too low or even null. As we are measuring
density contrast we can interpret those blue regions as regions in which the density of
the Universe is below the mean density of the Universe. This mean density is given by
the white regions on the figures, meanwhile the pink and red regions are those regions in
which the density is above the mean density of the Universe, given place to structures of
dark matter haloes in which baryonic density could merge and form galaxies and clusters.
Those figures will be better understood when they will be compared with the gravitational
potential maps in Figure 2.9 and the time derivative of the potential in Figure 2.10.

2.3.4 Solution to Poisson Equation for Φ(r) and Φ(k)

To solve the Poisson equation (Equation 1.57) in the Fourier space, we need to write it in
comoving coordinates:

∇2
xδΦ(x, t) = 4πGa2(t)δρ (2.37)

Where ∇2
x denotes the laplacian operator in comoving coordinates. With δρ =

∆(x, t)ρ(t), the last equation becomes:
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2.3 Fourier Analysis of the Density Field

Figure 2.6: Density contrast ∆(r) for different slices of thickness 10h−1Mpc. This slices
were calculated with Ng = 64 for redshift z = 0.0.
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Figure 2.7: Density contrast ∆(r) for different slices of thickness 10h−1Mpc. This slices
were calculated with Ng = 128 for redshift z = 0.0. These slices correpond to the same
maps of Figure 2.6 with a better resolution.

74



2.3 Fourier Analysis of the Density Field

Figure 2.8: Density contrast ∆(r) for different slices of thickness 10h−1Mpc. This slices
were calculated with Ng = 256 for redshift z = 0.0. These slices correpond to the same
maps of Figure 2.6 with the best resolution.
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∇2
xδΦ(x, t) = 4πGa2(t)ρ(t)∆(x, t) (2.38)

Making a Fourier transform with our sign convention, in order to solve this equation,

we can simply change∇x → ik, then∇2
x = ∇x · ∇x = −k2, and find that:

−k2δΦ(k, t) = 4πGa2(t)ρ(t)∆(k, t)

δΦ(k, t) = −4πGa2(t)ρ(t)
∆(k, t)

k2
(2.39)

Finally, the gravitational potential in the Fourier space is calculated computationally

with the help of Equation 2.39, where in the expression for ∆(k, t) was used ∆d(k, t)

from Equation 2.34. This gravitational potential in the Fourier space will be used to find

the time derivative of the potential. Before this step, we made an inverse FFT in order to

compute the values of the gravitational potential in the position-space using the library

FFTW, as explained in the preceding subsection 2.3.3. With the results from this inverse

FFT, we plotted the respective potential maps in slices of thickness 10 Mpch−1 for the

three different values of Ng = 64, 128, 256. We compare the density fluctuation maps

with the potential maps to find a correspondence.

We can see the maps of the gravitational potential for different slices in Figure 2.9,

were we have used Ng = 256 due to the improved resolution offered. In those maps, blue

regions are related with a deeper potential, that means, more negative values of Φ In those

blue regions we expect a correspondence with the respective density contrast map, i.e., a

deeper potential will be related with a high value of the density contrast, which means that

a great amount of matter will be accumulated in a deep potential. White regions in the

gravitational potential maps are regions in which the potential is neither deep nor elevated

and can be related with regions in which the density contrast has small values near to zero

and the density is the same as the mean density of the Universe. Finally, red regions of

the potential maps are related with positive values of Φ and can be thought not as a well

but as a mountain. In those red regions the density contrast is very low or even negative,

indicating that the density in these regions is below the value of the mean density of the

Universe. Comparing these pictures with the respective ones on Figure 2.8 we can see

that it is an evident correspondence and our conclusions are correct.
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2.3 Fourier Analysis of the Density Field

Figure 2.9: Gravitational potential Φ(r) for different slices of thickness 10h−1Mpc. This
slices were calculated with Ng = 256 for redshift z = 0.0. From left to right and top to
bottom, these maps are the respective potential maps for each of the density contrast maps
shown in Figure 2.8, i.e., the upper left potential map corresponds to the upper left density
map in Figure 2.8, the upper right potential map corresponds to the upper right density map,
and so on. Φ is given in km2s−2.
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2.3.5 Time Derivative of Potential Φ̇(r) and Φ̇(k)

We are really interested in the instantaneous temporal rate of change of the potential. For
this reason, we are going to differentiate Equation 2.39 respect to time. Before that, let’s
multiply and divide this equation by the scale factor a(t), and taking into account that
ρ(t)a3(t) is a time independent quantity, we obtain:

δΦ̇(k, t) = −4πG

k2

[
ρa3(t)

] ∂
∂t

[
∆(k, t)

a(t)

]
(2.40)

Taking into account that the Hubble’s parameter is related with the scale factor by
H(t) = a−1ȧ, we can easily make the derivative in Equation 2.40 to obtain:

δΦ̇(k, t) =
4πG

k2

[
ρa3(t)

] [∆(k, t)

a(t)
H(t)− ∆̇(k, t)

a(t)

]
(2.41)

Remembering that ρcomoving = ρ(t)a3(t), Ωm,0 = ρcomoving/ρc,0 = ρm,0/ρc,0, where ρc,0
is the critical density at the present time, and multiplying and dividing Equation 2.41 by
3H2

0/2, we have:

δΦ̇(k, t) =
3

2

H2
0

k2
Ωm,0

[
H(t)

a(t)
∆(k, t)− ∆̇(k, t)

a(t)

]
(2.42)

Now, taking the continuity equation:

∂ρ

∂t
+∇ · (ρvp) = 0 (2.43)

Where vp is the peculiar velocity field. Writting Equation 2.43 in terms of the density
contrast ∆ = (ρ− ρ)/ρ⇒ ρ = ρ∆ + ρ, dividing the resulting equation by ρ, and passing
from physical r to comoving x coordinates we obtain:

−a(t)∆̇(x, t) = ∇x · [1 + ∆(x, t)]vp (2.44)

We can define the pseudo-peculiar momentum field to be:

p(x, t) = [1 + ∆(x, t)]vp (2.45)

⇒ −a(t)∆̇(x, t) = ∇x · p(x, t) (2.46)
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To solve Equation 2.46, we make a Fourier transform. Remembering that our conven-
tion is a -1 sign in the exponential for a Fourier transform from the position space to the
k-space and the inverse transform has sign +1, we obtain:

ik · p(k, t) = −a(t)∆̇(k, t) (2.47)

It is very important to remark that depending on the sign convention in the Fourier
transform, this equation can differ in a (-) sign, i.e., if the convention in the Fourier trans-
form is +1 for position-space to k-space and -1 for k-space to position-space, the equation
obtained will be the following:

ik · p(k, t) = a(t)∆̇(k, t) (2.48)

With our convention, replacing Equation 2.47 into Equation 2.42, we have:

δΦ̇(k, t) =
3

2

H2
0

k2
Ωm,0

[
H(t)

a(t)
∆(k, t) +

ik · p(k, t)

a2(t)

]
(2.49)

If the sign convention is the one used to find Equation 2.48, when replacing into
Equation 2.42 we will have:

δΦ̇(k, t) =
3

2

H2
0

k2
Ωm,0

[
H(t)

a(t)
∆(k, t)− ik · p(k, t)

a2(t)

]
(2.50)

This last equation is used by [23]. Equation 2.49 is the same Equation 1.87 which
will be used to find the temperature fluctuations, i.e., the anisotropy related with the
Sachs-Wolfe effect.

We also have performed an inverse FFT of Equation 2.49 to find the maps of the
time derivative of the gravitational potential. We plotted them in slices of thickness
10 Mpch−1 as in the aforementioned maps of density fluctuation and potential, for the
three different values of Ng = 64, 128, 256. Here, we again compare the correspondence
between the maps of density fluctuation and potential to find a successful correspondence.

We can see the maps of the time derivative of the gravitational potential for different
slices with Ng = 256 in Figure 2.10. In this figure, we can see a similar structure to
that of the gravitational potential. What we expect is that in the deepest regions of the
gravitational potential, its time derivative will change more rapidly than in other regions.
This change can be detected when seen the evolution of one of these slices.
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Figure 2.10: Time derivative of the gravitational potential Φ̇(r) for different slices of thick-
ness 10h−1Mpc. This slices were calculated with Ng = 256 for redshift z = 0.0. From
left to right and top to bottom, these maps are the respective time derivative maps for each of
the potential maps shown in Figure 2.9, i.e., the upper left map in this figure corresponds to
the upper left potential map in Figure 2.9, the upper right map corresponds to the upper right
potential map, and so on. Φ̇ is given in km2s−3.
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2.4 Theoretical Model of Linear Fluctuations and Dimen-
sionless Growth Rate
The linear approximation for the density fluctuations will be used in order to compare the
results of the time derivative of the gravitational potential with a special function which
becomes the relation for the time derivative in a linear expression. First, we are going to
remember the general equation in the small perturbation regime for the density contrast
given by Equation 1.58:

d2∆

dt2
+ 2

(
ȧ

a

)
d∆

dt
− 4πGρ0∆ = 0 (2.51)

And the equation for the time derivative of the gravitational potential (Equation 2.42):

Φ̇(k, t) =
3

2

H2
0

k2
Ωm,0

[
H(t)

a(t)
∆((k, t))− ∆̇(k, t)

a(t)

]
(2.52)

We can use the fact that in the linear approximation the density contrast is a function
of time only and write:

d∆

dt
=

da

dt

d∆

da
= ȧ

∆

a

d lnD

d ln a
= H∆

d lnD

d ln a
(2.53)

If we neglect the decaying mode, the time behaviour of the density contrast would be
∆(a) ∼ D(a) as in Equation 1.75; then from the continuity equation (Equation 1.55) we
have:

H∆
d lnD

d ln a
= −∇ · u

⇒ ∆ = − 1

Hf(a)
(2.54)

The function f is called the dimensionless growth rate. For the present epoch and in
the case of ΩΛ = 0 a good approximation is:

f(Ωm, z = 0) =
d lnD

d ln a

∣∣∣∣
z=0

≈ Ω0.6
m (2.55)

Finally, with this last result, we desire to compare the results for the time derivative
of the gravitational potential obtained using Equation 2.49 with the corresponding results
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from linear theory. In this regime, when performing the time derivative of the density
contrast, one can obtain [4] ∆̇(k, z = 0) = Ḋ∆(k, z = 0). Substituting this expression
in Equation 2.42, we have:

Φ̇l(k, t) =
3

2

(
H0

k

)2

Ωm
ȧ

a2
∆(k, t)[1− f ] (2.56)

In order to calculate the dimensionless growth rate f , we use the first equality in
Equation 2.55 together with Equation 1.76 for the linear growth factor. After taking the
respective derivatives and a long algebraic procedure, we obtain the following results:

dD(a)

da
=

5

2
β(a) {Ωm(a) + η(a) [Ωm(a)β(a)O(a)− 1]} (2.57)

Where the expressions β(a), η(a) and O(a) are given by:

η(a) =
3ΩΛ,0a

3

(1 + y3)

β(a) =
1

Ω
4/7
m (a)− 1

140
Ω2
m(a) + 209

70
Ωm(a) + 1

70

O(a) =
4

7
Ω−3/7
m (a)− 1

70
Ωm(a) +

209

70

and y given by Equation 1.74. Whit those expressions, the dimensionless growth rate
will become:

f(a) =
d ln (D(a))

d ln (a)
= β(a)ξ(a)ζ(a) (2.58)

With:

ξ(a) = Ω4/7
m (a)− ΩΛ(a) +

(
1 +

Ωm(a)

2

)(
1 +

ΩΛ(a)

70

)
ζ(a) = 1 + η(a)

[
β(a)O(a)− 1

Ωm(a)

]
(2.59)

And finally, Ωm(a) and ΩΛ(a) given by Equation 1.77 and Equation 1.78, respectively.

With the help of Equation 2.58 and Equation 2.56 and performing again a FFT in
order to obtain the values of the time derivative of the gravitational potential in the linear
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regime Φ̇l, it has been obtained the maps of this values analogous to the maps found with
the expression of Equation 2.49. The maps of Φ̇l, shown in Figure 2.12 have a good
correspondence with those shown in Figure 2.10. As said before, in the deepest regions
of the gravitational potential maps it is expected to have a more rapid variation of the time
derivative.

In order to verify the behavior and the range of the dimensionless growth rate given by
Equation 2.58 in terms of the scale factor a or even in terms of the redshift z, the dimen-
sionless growth rate was calculated for different values of a and z. Figure 2.11 shows the
behavior of this function in terms of both quantities. In both cases Equation 2.58 should
be lesser than 1 for all values of z or a, and it is verified in Figure 2.11.
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Figure 2.11: Dimensionless growth rate f in terms of the scale factor a. The dimensionless
growth rate should be lesser than 1, in order to obtain a sign dependence on Equation 2.56
given only by the sign of the density contrast ∆.

83



2. CONSTRUCTION OF THE MAPS OF DENSITY FLUCTUATION

Figure 2.12: Time derivative of the gravitational potential in the linear regime Φ̇l(r) for
different slices of thickness 10h−1Mpc. This slices were calculated with Ng = 256 for
redshift z = 0.0. From left to right and top to bottom, these maps are the respective time
derivative maps for each of the potential maps shown in Figure 2.9. It is also remarkable
to say that those maps have a good correspondence with the maps obtained with the exact
expression of the time derivative, in Figure 2.10. Φ̇l is given in km2s−3.
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“The scientific man does not aim at
an immediate result. He does not
expect that his advanced ideas will
be readily taken up. His work is like
that of the planter - for the future.
His duty is to lay the foundation for
those who are to come, and point
the way.”

Nikola Tesla.

CHAPTER

3
Estimation of the Late

Integrated Sachs-Wolfe Effect

In this chapter we are going to describe the method we used to estimate the late

Integrated Sachs-Wolfe effect in the cosmological simulation. It should be remarked that

in this work we are not computing a complete Integrated Sachs-Wolfe effect, due to the

fact that this effect is underwent by the photons when they pass through all the structures

in the Universe between the surface of Last Scattering and the Earth, while our work is

constrained to the 400h−1 that compose the lenght of our simulation box.

In order to compute the Sachs-Wolfe integral from Equation 3.1, it is necessary to

perform an interpolation of the function Φ̇(xz), being xz the comoving position in the

z-axis of the cubic box used. Once this interpolation is completed, the SW integral is

calculated and the maps of the temperature variation in the CMB can be obtained. We will

make a brief discussion remembering the physical implication of the SW effect before we

show the results of the SW maps, and then make a discussion about the tests we perform

to our results.

3.1 The Integrated Sachs-Wolfe Effect
As seen before in subsection 1.5.5, the Sachs-Wolfe effect studied in this work is the

called Integrated Sachs-Wolfe Effect (ISW), which is produced between the surface
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of last scattering and the Earth. The ISW effect is a fluctuation on the temperature of

the Cosmic Microwave Background (CMB) induced by gravitational instabilities when

photons pass through an evolving gravitational potential well. As the photons climb up

gravitational hills or fall into gravitational wells, associated with regions of overdensities

or underdensities through the density contrast ∆, the photons will change their energies.

This change in the energy of the CMB photons is related to a change in the temperature

of the CMB ∆T respect to the mean CMB temperature T 0. The expression of ∆T can

be obtained through integration of the time derivative of the gravitational potential well

Φ̇ as a function of cosmic time t or as a function of the comoving coordinates x.

In this work, it has been used the expression that relates the perturbation in the mean

temperature ∆T with the temporal change of the gravitational potential through the inte-

gration over the comoving position (see subsection 1.5.5), as follows:

∆T (n̂) =
2

c3
T 0

∫ xr,L

0

Φ̇(xr, n̂) dxr (3.1)

Which is Equation 1.85 seen before. The time derivative of the gravitational poten-

tial well Φ̇ has been obtained through the Poisson equation (Equation 1.57) with Fourier

methods, and allows us to find its expression in the Fourier space, given by:

Φ̇(k, t) =
3

2

H2
0

k2
Ωm,0

[
H(t)

a(t)
∆((k, t)) +

ik · p(k, t)

a2(t)

]
(3.2)

When this expression is computed, we can find the numerical values of Φ̇ in the

position-space, and perform the integration to obtain the perturbations in the tempera-

ture. The method used to calculate this temperature perturbations is going to be described

in section 3.2. It has also been used a linear approximation in order to compare the re-

sults from Equation 3.2 with those from this linear regime. Furthermore, as the ISW

effect is related with the linear growth of structures, a comparison between this linear

regime in which the ISW effect dominates and the exact solution is a good way to esti-

mate the accuracy of the results. Assuming a linear growth of the structures, related with

the density contrast ∆, the expression in the linear approximation of Φ̇(x) is given by (see

section 2.4):

86



3.2 Temperature Perturbations and Sachs-Wolfe Anisotropy Maps

Φ̇l(k, t) =
3

2

(
H0

k

)2

Ωm
ȧ

a2
∆(k, t)[1− f ] (3.3)

Then, we use Equation 3.1, Equation 3.2 and Equation 3.3 to compute the Integrated
Sachs-Wolfe effect using the exact values from the simulation as well as the approxima-
tion from the linear theory.

3.2 Temperature Perturbations and Sachs-Wolfe
Anisotropy Maps
In order to compute the temperature perturbations it is necessary to know an expression
for the time derivative of the gravitational potential Φ̇(x). As we are working with the
numerical values of Φ̇(x) calculated by means of a Fast Fourier Transform (see subsec-
tion 2.3.5) it should be performed an interpolation of the numerical values of Φ̇(x) of
each cell point in order to obtain a function that can be adequately integrated. In this
section we are going to describe the method we used to perform such interpolation and
the corresponding integration to obtain the temperature perturbations.

3.2.1 Interpolation and Numerical Integration of the Function Φ̇(xz)

At this point, it is necessary to clarify that as we need to calculate the Sachs-Wolfe
integral (Equation 3.1), we have to choose some snapshots of the same cosmological
simulation for different redshifts in order to create a mock catalogue, representing a part
of the Universe with the different snapshots, one behind the other, beginnig with the
snapshot for redshift z = 0.0 where the observer is going to be placed, and finishing with
a snapshot of redshift approximately z = 2.0. This full work is going to be performed in
a future step of this project, but in the present work the snapshot with redshift z = 0.0

has been chosen in order to calculate the Sachs-Wolfe integral and analyze its behavior
in only one snapshot.

Once the gravitational potential Φ(x) and its time derivative Φ̇(x) are computed in
the cosmological simulation through the Fast Fourier Transforms described in chapter 2,
we need to choose a direction along which we are going to perform the SW integral and
a place to put the observer. The observer is placed in the plane with comoving position
xz = 0, where xz represents the z-component of the comoving position vector x. Then,
along the z-axis we performed an interpolation of the values of Φ̇(xz). In order to compute
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the interpolation function, we need to construct, again, a grid with the same number of
grid points used in the Fast Fourier Transform. Remembering that we are going to analyze
the results obtained from the grids with Ng = 2563 cells, we built a grid with the same
number of grid points per axis.

Coming back to the interpolation, after the grid construction, we assign again the
respective values of position, density contrast, gravitational potential and time derivative
of the potential to each of the grid points. For each value of fixed xx and xy (the x and
y-component of the vector x) we have 2 vectors of Ng-components, one corresponding
to the values of xz of each one of the grid points along the z-axis, and one corresponding
to the values of the time derivative Φ̇(xz). We need to identify each vector for fixed xx,
xy. This identification is made with the help of and ID similar to those used in the Fourier
Transform. In this case, the ID of each vector, denoted by n is given by:

n = iny + j (3.4)

Where i and j are the loop indices related to the x and y-component of each cell,
respectively. After the assignment of values of xz and Φ̇(xz) for each column and the
identification by means of the ID n, we performed the interpolation of the vector con-
taining the values of xz and the vector with the values of Φ̇(xz), finding an interpolated
function Φ̇interp(xz). We simply use a linear interpolation between the data points. As
the data sets do not contain the extreme values of the box, i.e., xz = 0h−1Mpc and
xz = 400h−1Mpc, we force that the values of the position of the first grid point to be
precisely xz = 0h−1Mpc and the position of the last grid point to be xz = 400h−1Mpc.

With this function, Φ̇interp(xz) we can perform the integral from Equation 3.1 in order
to obtain a map of the behavior of this integral along one of the snapshots. Both, the
interpolation and integration of the function Φ̇interp(xz) were performed with the help
of the GNU Scientific Library (GSL) 1. GSL is a better documentated library than the
FFTW library, then it is not necessary to show how those interpolations were performed.

In Figure 3.1 we show the curves of one of the interpolated functions for the vector
with ID n128 = 0 for the grid Ng = 1283 and the comparison with the four corresponding
vectors of the grid Ng = 2563 that can be inside the vector n128 = 0 of the grid
Ng = 1283, i.e., the vectors with IDs n256 = 0, 1, 256, 257. Also, a curve for the vector
with ID n64 = 0 for the grid Ng = 643 is depicted, although obviously it is not so
accurately fitted with the other five curves, the shape and the order of magnitude of the

1http://www.gnu.org/software/gsl/
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six curves is very similar. We can also see that the value of the interpolated function

Φ̇interp(xz) does not change so much if different resolutions are used. In particular, the

yellow-circled curve of Figure 3.1 corresponds to the interpolation for Ng = 64, the

aquamarine-squared curve corresponds to the interpolation for Ng = 128, while the other

curves correspond to the cells of the grid Ng = 256. So we conclude that our results are

numerically convergent and discretization is not mucha an issue.
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Figure 3.1: Interpolated function Φ̇interp(xz). This figure shows six different curves, four of
each correspond to the interpolated function for the vectors with ID n256 = 0, 1, 256, 257

of the grid Ng = 256, while the aquamarine-squared curve correspond to the interpolated
function for the vector n128 = 0 of the grid Ng = 128 and the yellow-circled curve corre-
spond to the interpolated function for the vector n64 = 0 of the grid Ng = 64. The curves
show the interpolation performed from xz = 0h−1Mpc to xz = 400h−1Mpc with a step of
∆xz = 1h−1Mpc. These curves show that both, the order of magnitude and the shape of the
interpolated function do not depend on the resolution.

Once an interpolated function for the time derivative of the gravitational Φ̇interp(xz)

potential is calculated for certain fixed values of xx and xy, a numerical integration of

Equation 3.1 was performed. A Simpson-integration method was implemented manually.

With this routine we obtain the N2
g values of the integral for the N2

g cell points at xz =

0 and after multiplying them with the corresponding factors preceding the integral in

Equation 3.1, we can obtain the late Integrated Sachs-Wolfe maps for one snapshot. The

integration with the Simpson method was performed with two different integration steps,

in order to test the numerical convergence of the integration. For the SW map shown
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in Figure 3.2, they have been used 10000 steps for the integration, but a first integration
with only 1000 steps were performed before. The comparison between both results wil
be discussed in section 3.3.

Figure 3.2: Map of the late Integrated Sachs-Wolfe anisotropy obtained from the integration
of the interpolation function Φ̇interp(xz) with the values obtained from Equation 3.2. This
map was made with 10000 integration steps. The temperatures are in logarithmic scale, i.e.,
log10(∆T ), with with [∆T ] = µK.

The same method was used for the values obtained with the linear approximation for
the time derivative of the gravitational potential with the help of Equation 3.3 and another
interpolated function Φ̇int,linear(xz) = Φ̇i,l(xz) was found and integrated. The same com-
parison between the interpolated functions for each grid, as in Figure 3.1, was performed
for the function Φ̇i,l(xz), and it is shown in Figure 3.3. It is possible to see that both,
the shape and order of magnitude of the curves in Figure 3.3 is very similar to those of
Figure 3.1. The corresponding SW map with 10000 integration steps is shown in Fig-
ure 3.4. Its comparison with the map obtained with 1000 integration steps will be made
in section 3.3.

In order to make some verifications on the implemented method and on the obtained
results, an statistical analysis was performed with the help of the GSL library, and for
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Figure 3.3: Interpolated function with the values of the linear approximation Φ̇i,l(xz). This
figure shows six different curves, four of each correspond to the interpolated function for the
vectors with ID n256 = 0, 1, 256, 257 of the grid Ng = 256, while the aquamarine-squared
curve correspond to the interpolated function for the cell n128 = 0 of the grid Ng = 128

and the yellow-circled curve correspond to the interpolated function for the vector n64 = 0

of the grid Ng = 64. The curves show the interpolation performed from xz = 0h−1Mpc to
xz = 400h−1Mpc with a step of ∆xz = 1h−1Mpc. These curves show that both, the order
of magnitude and the shape of the interpolated function do not depend on the resolution.

that reason, the conventions of GSL for the calculus of the higher moments (skewness

and kurtosis) are assumed here. The results of the temperature fluctuations ∆T obtained

for two different snapshots were compared. The snapshot of the cosmological simulation

used until now, which has the positions and velocities of all particles at redshift z = 0.0,

which means that such particles are at present time, was compared with a snapshot with

redshift z = 2.16874 ≈ 2.17, which means, it contains the positions and velocities of the

same particles but in a past time. It was expected that the temperature fluctuations ∆T

were more uniform respect to the mean temperature of the CMB, i.e., such perturbations

were near to be ∆T = T − T 0 = 0. Figure 3.5 shows the Sachs-Wolfe map obtained for

the snapshot with redshift z = 2.17 in the exact regime, while Figure 3.6 shows the same

map in the linear regime, both maps obtained with 10000 integration steps. Figure 3.7

shows the histograms with the distributions of temperatures for both snapshots and in

both regimes: the linear regime, according to Equation 3.3 and the exact regime from

Equation 3.2.

According to the theory seen in subsection 1.5.5, the cold points in the maps shown
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Figure 3.4: Map of the late Integrated Sachs-Wolfe anisotropy obtained from the integration
of the interpolation function Φ̇interp(xz) with the values obtained in the linear regime from
Equation 3.3. This map was made with 10000 integration steps. The temperatures are in
logarithmic scale, i.e., log10(∆T ), with [∆T ] = µK.

in Figure 3.2, Figure 3.4, Figure 3.5 and Figure 3.6 correspond to underdense regions,

that means, regions where the density is very near or even lower than the mean matter

density ρ and in these regions, the gravitational potential could be interpreted as a mount,

not as a well. In underdense regions, at high redshift the photons climb the hill losing

energy, and with the expansion of the Universe, the “height” of the mount becomes lower

and when the photons are going to fall off from the mount, photons will win energy, but

in a less amount than the energy they lost previously. On the other hand, hot points in

the Sachs-Wolfe maps correspond to regions where the gravitational potential is a well,

hosting matter structures, i.e., in those regions the density is higher than the mean matter

density of the Universe. Then, the photons will begin to descend the potential well,

gaining energy, and after some time, they will climb the other side of the potential well,

losing a quantity of energy that is less than the quantity they gained before, due to the

lost of depth of the potential well as the Universe accelerates its expansion. According

to these interpretations, on the maps shown on the mentioned figures the regions where
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3.2 Temperature Perturbations and Sachs-Wolfe Anisotropy Maps

Figure 3.5: Map of the late Integrated Sachs-Wolfe anisotropy corresponding to the snap-
shot with redshift z = 2.17 obtained with the exact solution from Equation 3.2. This map
was made with 10000 integration steps. The temperatures are in logarithmic scale, i.e.,
log10(∆T ), with [∆T ] = µK.

the ∆T values are higher, can be related with some structures like clusters of particles
or even with filaments containing a matter density that is over ρ and that are thick along
the integration axis. Conversely the colder regions are related to underdensities (not only
void regions, but they can be also included in this interpretation) along the integration axis.

Concerning to the histograms in Figure 3.7, one can see that in the four curves shown,
the mean ∆T is zero, and the median of the data ∆Tmedian is very near to zero, allowing
us to conclude that for most of the data, the differences between the temperature at each
grid cell point relative to the mean temperature of the CMB, ∆T = T − T 0, is zero, or
that the temperature at most of the points of the maps are exactly or very near to the mean
temperature of the CMB T 0. Taking into account that some of the higher order moments
of a distribution (skewness or third moment, b1 and kurtosis or fourth moment, g2) can
give us information about the shape and symmetry of the distribution as:

• When the skewness is positive (b1 > 0) we have an asymmetric distribution with a
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Figure 3.6: Map of the late Integrated Sachs-Wolfe anisotropy corresponding to the snapshot
with redshift z = 2.17 obtained with the values from the linear regime of Equation 3.3. This
map was made with 10000 integration steps. The temperatures are in logarithmic scale, i.e.,
log10(∆T ), with [∆T ] = µK.

tail extending to the positive values.

• If b1 < 0, the distribution has a tail extending towards the negative values.

• When the kurtosis is positive (g2 > 0) the distribution is called leptokurtic, which
means that it has a more acute peak with flatter tails.

• If g2 < 0, the distribution is platykurtic, with a lower and wider peak and thinner
tails.

With those concepts in mind, it is possible to see that all the four distributions of
Figure 3.7 are leptokurtic. The skewness of the curves for the snapshot with redshift
z = 0.0, indicates us that they have an asymmetric tail toward the negative values of ∆T ,
which also means that for this redshift, there are slightly more cold regions in the Sachs-
Wolfe maps than the hotter ones. The tail towards the negative values of ∆T is more
evident in the linear approximation, and can be seen in the values of the Table 3.1 and in

94



3.2 Temperature Perturbations and Sachs-Wolfe Anisotropy Maps

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.006 -0.004 -0.002  0  0.002  0.004  0.006

lo
g

1
0
(F

re
q
u
e
n
c
y
)

∆T [µ K]

Histogram of ∆T for redshift z=0

∆T for exact regime
∆T for linear regime

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.006 -0.004 -0.002  0  0.002  0.004  0.006

lo
g

1
0
(F

re
q
u
e
n
c
y
)

∆T [µ K]

Histogram of ∆T for redshift z=2.17

∆T for exact regime
∆T for linear regime

Figure 3.7: Histograms of the temperature fluctuations ∆T for the snapshot with redshift
z = 0.0 (top figure) and for the snapshot with redshift z = 2.17 (bottom figure). For the
highest redshift it is necessary to multiply the obtained temperature fluctuation ∆T by the
squared scale factor a2, in agreement with Equation 1.18, in order to obtain the temperature
fluctuation at present time. For redshift z = 0.0 it is not necessary to perform such scale
operation because the scale factor has the value a = 1. The temperature fluctuations are in [µ
K]. Some statistical properties for the four histograms are given in Table 3.1.
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Redshift
z = 0.0 z = 2.17

Statistical Regime
property Exact Linear Exact Linear

∆T 0.0 0.0 0.0 0.0

∆Tmedian 1.562× 10−5 1.1118× 10−5 −5.7× 10−7 −1.689× 10−5

σ2 7× 10−8 2× 10−8 5× 10−8 1.0× 10−8

σ 2.673× 10−4 1.5136× 10−4 2.1670× 10−4 1.1127× 10−4

b1 −3.96614 −8.2077 1.303624 4.112498

g2 190.07742 356.84236 28.2038 92.22308

Table 3.1: Statistical properties for the histograms of the temperature fluctuation for the
Sachs-Wolfe maps in Figure 3.7. ∆T is the mean, ∆Tmedian is the median, σ2 is the variance,
σ is the standard deviation, b1 is the skewness and g2 is the kurtosis.

the top figure of Figure 3.7. In the case of the snapshot with redshift z = 2.17, although
their behavior is also of a leptokurtic distribution as those for z = 0.0, their skewness
show us that the asymmetry is in the opposite way, i.e., as b1 > 0 in each distribution,
each one has a tail which extends towards the positive values of ∆T , meaning that the
corresponding SW maps has slightly more hotter regions than colder ones.

In order to relate those asymmetries and shapes of the histograms of ∆T with other
physical quantities, the histograms for the density contrast ∆(x) and the time derivative of
the gravitational potential Φ̇(x) where calculated for both snapshots. The histograms of
the density contrast are shown in Figure 3.8, and the corresponding statistical properties
are shown in Table 3.2.

Linear scale Log10 scale
Statistical Redshift
property z = 0.0 z = 2.17 z = 0.0 z = 2.17

∆ −5.5× 10−7 −5.5× 10−7 −0.926703 −0.188314

∆median −0.75 −0.375 −0.602043 −0.20412

σ2 37.686872 2.150968 2.394453 0.246356

σ 6.138963 1.466618 1.547402 0.496342

b1 54.674557 14.404696 −1.969069 −7.033603

g2 6100.466752 756.215874 2.753099 111.645074

Table 3.2: Statistical properties for the histograms of the density contrast in Figure 3.8. ∆

is the mean, ∆median is the median, σ2 is the variance, σ is the standard deviation, b1 is the
skewness and g2 is the kurtosis.
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The histograms for the density contrast ∆(x) shows that for redshift z = 0.0 there

are many fluctuations with higher values of ∆, which is an opposite behavior as for z =

2.17. This behavior for z = 0.0 indicates that there exist many cells of the grid that

can be interpreted as regions where the density contained inside is higher than the mean

density of the simulation ρ. Those overdense regions compose the structures as clusters

or filaments where there is a great amount of particles.

Conversely, the histogram of the density contrast for z = 2.17 indicates a higher

frequency for the fluctuations with lower values of ∆(x), which means that there exist

a greatest amount of regions where the density contained inside the cells is very near or

even lower than ρ, composing the underdense regions or voids.

The behavior described above is expected, because at higher redshifts not all the par-

ticles have been atracted to each other and the simulations (and the Universe) whould

present a lightly uniform distribution near the lower values of ∆(x).

The asymetric behavior in the density contrast should affect the shape of the distribu-

tion of Φ̇(x), and then, the distribution of temperature fluctuations ∆T of the late ISW

maps should show it, as we are going to describe. For the time derivative of the potential,

the histograms are shown in, Figure 3.9 Figure 3.10 and Figure 3.11. The statistical

analysis of those histograms is shown in Table 3.3 for z = 0.0 and Table 3.4 for z = 2.17,

respectively.

Redshift z = 0.0

Linear scale Log10 scale
Statistical Regime
property Exact Linear Exact Linear

Φ̇ 0.0 0.0 8.07166 8.087991

Φ̇median −9.76867× 105 −1.172015× 106 8.08471 8.1

σ2 1.031169× 1015 1.087435× 1015 0.015715 0.015194

σ 3.21118× 107 3.297628× 107 0.125362 0.123267

b1 0.592107 0.545591 13.98739 13.759251

g2 0.20693 0.231962 −1.220344 −1.171878

Table 3.3: Statistical properties for the histograms of the time derivative of gravitational
potential in Figure 3.9 for redshift z = 0.0. Φ̇ is the mean, Φ̇median is the median, σ2 is the
variance, σ is the standard deviation, b1 is the skewness and g2 is the kurtosis.

In order to analyze the histograms of , it is necessary to make a previous analysis of

the maps constructed in chapter 2. It is possible to see a very good correlation between
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Figure 3.8: Histograms of the density contrast ∆(x). The figure shows two curves, one for
the snapshot with redshift z = 0.0 and for the snapshot with redshift z = 2.17, where the
density contrast data are in logarithmic scale: log10(∆ + 1). Some statistical properties of the
histograms are given in Table 3.2.
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Figure 3.9: Histogram of the time derivative of the gravitational potential Φ̇ for redshift
z = 0.0. The curves shown give a comparison between the distribution of the linear regime
data (Equation 3.3) and the data obtained with the exact solution (Equation 3.2) The data
shown in both histograms are given in logarithmic-scale. For each regime, one of the curves
gives the values of Φ̇ > 0, while the other curve gives the absolute value of the data when
Φ̇ < 0. The statistical analysis of the histograms is shown in Table 3.3.
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Figure 3.10: Histogram of the time derivative of the gravitational potential Φ̇ for redshift
z = 2.17. The curves shown give a comparison between the distribution of the data obtained
with the exact solution (Equation 3.2) for positive and negative values. The data shown are
given in logarithmic-scale. For each regime, one of the curves gives the values of Φ̇ > 0,
while the other curve gives the absolute value of the data when Φ̇ < 0. The statistical analysis
of the histograms is shown in Table 3.4.

Statistical Redshift z = 2.17

property Linear scale Log10 scale

Φ̇ 0.0 9.031761

Φ̇median 5.817817× 106 9.0368

σ2 1.392317× 1016 2.438× 10−3

σ 1.179964× 108 0.0493776

b1 0.62495 517.536793

g2 −0.323848 −2.5411

Table 3.4: Statistical properties for the histograms of the time derivative of gravitational
potential in Figure 3.10 for redshift z = 0.0. Φ̇ is the mean, Φ̇median is the median, σ2 is the
variance, σ is the standard deviation, b1 is the skewness and g2 is the kurtosis.
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the maps of the density contrast ∆(x) (Figure 2.8), with the maps of the gravitational

potential (Figure 2.9). From those maps, it is possible to see that high values of the

density contrast are related with lower and negative values of the gravitational potential,

that means, with regions where Φ(x) has a well shape. Conversely, underdense regions

are related with higher and positive values of Φ(x), where the potential has the shape of a

“mountain”.

When comparing the potential maps with its temporal gradient (Figure 2.10 and Fig-

ure 2.12), it is possible to see that the lowest values of Φ(x) are correlated with the highest

values of Φ̇(x), and vice versa. The higher values of Φ̇(x) are related with a faster evo-

lution in time of the gravitational potential. As we are comparing maps with redshift

z = 0.0, this behavior is expected, because by the accelerated rate in the expansion of the

universe at lower redshift, the gravitational potential should evolve quickly. Those regions

where Φ(x) < 0, are deep potentials which will evolve in order to lose some depth and

became more “flat”. Regions where Φ(x) > 0, as they’re more like a “mountain”, with

the expansion of the universe, will became less higher.

Now, we can make a connection between regions where the temporal gradient of the

gravitational potential has positive values and those regions where the density contrast

has higher values. On the other hand, the lower values of Φ̇(x), as implies a slower

evolution of the gravitational potential, are related with underdense regions.

The distribution of Φ̇(x) for redshift z = 0.0 is shown in Figure 3.9, given in

logarithmic scale. In order to avoid singularities in the logarithm, negative values are

present in absolute value. The histogram shows a little asymmetry towards higher values

of Φ̇(x), while the negative values present an abrupt fall. Then, the relation between

positive values of Φ̇(x) and positive values of the density contrast ∆(x) becomes clearer.

The asymmetry towards positive values of ∆(x) is related with the asymmetry towards

positive values of Φ̇(x) by the fact that overdense regions with deeper gravitational

potentials will underwent this faster evolution of the potential well. As distribution

of ∆(x) has a very abrupt fall for the lowest values, it implies the fall in the negative

values of Φ̇(x), which is associated with those regions with a potential that evolves slowly.

In the case of the distribution of Φ̇(x) for redshift z = 2.17, the behavior is opposed

to the discribed for z = 0.0. The fall in the distribution of Φ̇(x) in the higher values is

related with the fact that the distribution of the density contrast has no much high values,

while the asymmetry towards negative values of Φ̇(x) is related with the lower values

of the density contrast, due to the uniform distribution of matter at higher redshifts,
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as explained before. That means, for high redshift, the evolution of the gravitational

potential wells is slower than for low redshifts.

From this analysis, we can conclude that for low redshifts, as the evolution in time of

the gravitational potential wells is faster than for high redshift, the range of fluctuations of

temperatures increases, due to this evolution, which is expected because in an underdense

region, with a mountain-like potential a photon climbs it, and when it is going to descend,

the potential well has evolved quickly and its height is very lower. The cooling of the

photon (or the losing of energy) will be more notable than in the case that the potential

well evolves with a slower rate. Similarly, if the photon is going to pass through a deep

gravitational potential, when it descends, the photon will gain a large amount of energy,

and then increasing its temperature, but if the potential has evolve quickly and is less

deeper, the energy that the photon will lose will be smaller than the energy it has gained,

and the net change in the temperature will be reflected in an increase. If the potential

well evolves slowly, the net change in the energy will be lower and the increase in the

temperature will not be too large. Those effects on the evolution of the gravitational

potential wells are due to the fact of the accelerated expansion of the Universe at lower

redshifts, which make them evolve in a faster way than at a higher redshift.

Finally, despite for z = 0.0 the distribution of Φ̇(x) has an extended tail towards

positive and higher values, the amount of values fullfilling Φ̇(x) < 0 (related with un-

derdense regions) is greater than the amount of values for which Φ̇x > 0. Although the

maximum values of Φ̇(x) > 0 could be as large as four times the maximum value of

Φ̇(x) < 0 (in absolute value, i.e., actually it is the minimun value of the distribution), the

great amount of regions with Φ̇(x) < 0 compensates this behavior and the distribution

of values of integral from Equation 3.1 present a large asymmetry towards the negative

values of ∆T (as can be seen in Figure 3.9 and Table 3.3), related with cold regions in

the Sachs-Wolfe maps. This idea can be understood as if there is a gravitational poten-

tial well with positive derivative, evolving quickly and becoming less deeper due to the

expansion of the Universe with a very high value of Φ̇(x), but as there are many more

underdense regions with negative values of Φ̇(x), which means that these “mountains”

are decreasing in height, the great amount of underdense regions will compensate the big

overdensity with deep potential and even they will surpass the value of the overdensity,

leaving a net effect of the dominance of underdensities, related with such cold regions in

the distribution of temperature fluctuations ∆T .
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For z = 2.17, regions with Φ̇(x) > 0 present the abrupt fall at early values than the

underdense regions Φ̇(x) < 0, but the regions with positive values of Φ̇(x) are present

in a greater amount than the negative values of Φ̇(x). Then, for a similar reason as the

previous case with z = 0.0, although an underdense region could have a very high value

(in absolute value) of Φ̇(x), there will be many overdense regions with positive values of

Φ̇(x) which will compensate the fluctuation distribution and finally will leave a net effect

of a little domain of the overdense regions, which are those related with higher values

in the temperature fluctuations. This is the behavior that can be seen in the histogram

Figure 3.10 for z = 2.17.

3.3 Testing the Results
In order to test the accuracy of our results we performed three different test. The first one

has been discussed along with the development of the work and refers to the linear regime,

with which we can compare the exact results obtained from Equation 3.2. A second test

is about the temperature perturbations along the integration axis, i.e., the z-axis, which

are also compared with the linear regime. A final test is about numerical convergence of

the numerical integration method.

3.3.1 Comparison with Linear Regime

As the Integrated Sachs-Wolfe effect is related with the growth of the structures, and then

with the evolution of the gravitational potential wells, it is a good test to compare the

exact results obtained from Equation 3.2 with those obtained from the linear approxima-

tion of the growth of structures shown in Equation 3.3. A first comparison can be made

between the maps of Φ̇(x) from Figure 2.10, which were obtained from the exact equa-

tion (Equation 3.2), and the maps of the Figure 2.12, obtained in the linear regime. From

both figures one can see that the order of magnitude of both groups of maps is the same

(108 km2s−3), but the maps of the linear regime have a slightly small range.

Furthermore, the shape and structure of both maps is very similar, being the range in

the values of Φ̇l(x) of the linear approximation lower than in the exact solution, which

is expected from a linear approximation when compared with a non-linear solution for

the growth of structures. Then, we have a good correspondence between both groups of

maps and our results looks to be reliable.
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On the other hand, a comparison was performed between the interpolated function
Φ̇interp(xz) from the exact solution and the interpolated function from the values obtained
with the linear regime Φ̇i,l(xz). The comparison is shown in Figure 3.12.

Figure 3.12 shows the comparison between the interpolated functions Φ̇interp(xz) ob-
tained with the values from the exact solution and Φ̇i,l(xz) obtained with the values of
the linear regime. Both interpolated functions were performed for the grid of Ng = 256

and the figure shows both functions for three different vectors with IDs n = 0, 365, 500.
The comparison of both interpolated functions for each cell shows that both functions
Φ̇interp(xz) and Φ̇i,l(xz) have a very similar shape and share the same order of magnitude,
allowing us to conclude that both regimes, the linear one and the exact solution, have only
very small differences which will not disturb our results and will allow us to make a good
comparison between the maps of the temperature fluctuations obtained with both regimes.

3.3.2 Temperature Perturbations along the z-axis
An analysis of the temperature perturbations along the integration axis (the z-axis) was
performed, in order to compare our results with those obtained by [4]. To obtain such
temperature perturbations, it is necessary to know the derivative of the temperature re-
spect to the comoving position xz along the z-axis. To compute dT/dxz we performed
a numerical integration of the integral from Equation 3.2 from back to front in each of
the cells along the z-axis. That means, we took a certain vector with ID n, given by
Equation 3.4, which has fixed values of i and j, i.e., fixed values of comoving position
xx and xy. Along the z-axis of this fixed vector, we began to integrate from the inner
border of the last cell, with position xz,in = (400 − Cell Size)h−1Mpc until the outer
border of the cell with position xz,out = 400h−1Mpc. The expression for Cell Size is
given by Equation 2.30, and in the particular case for Ng = 256, xz,in has the value
xz,in = 398.4375h−1Mpc. Once the integration between both limits gives the value of
∆Tn,1 for this cell, we divide this value of ∆Tn,1 by the size of the cell given by Equa-
tion 2.30, and we finally obtain the value of dTn,1/dxz for the last cell related with the
vector with ID n. The next step is to take the integral from the inner border of the next
to last cell, with position xz,in = (400− 2 Cell Size)h−1Mpc until the outer border of the
box, i.e., until xz,out = 400h−1Mpc, obtaining a value of ∆Tn,2. Then, we substract the
values ∆Tn,2−∆Tn,1 to obtain the actual value of ∆T related to the penultimate cell. Fi-
nally, dividing this value of ∆T by the size of the cell, we obtain dTn,2/dxz. This process
is performed along all the z-axis, finishing with the estimation of dT/dxz related to the
vector with ID n.
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Those integrals were performed with 10000 integration steps. The analysis and com-

parison with the results obtained with 1000 integration steps will be seen in subsec-

tion 3.3.3.

In Figure 3.13 we can see a comparison between the temperature fluctuations dT/dxz

along the z-axis analogous to the comparison shown in Figure 3.1, where we can see that

even for different resolutions, the curves hold their shapes and its order of magnitude.

On the other hand, a comparison between the temperature fluctuations obtained with

the values from the exact solution to Φ̇(x) and those from the linear regime is shown in

Figure 3.14. In this figure we can see, again, that both the shape and the order of mag-

nitude of the curves representing the temperature perturbations for both kind of solutions

are very similar, and the methods used until now and the corresponding results still look

reliable. The curves of Figure 3.14 were calculated for the grid of Ng = 256 cells per

axis.

As said before, the idea to calculate the temperature perturbations along the integration

axis is to compare our results with those of [4] to see if our methods allow us to obtain

reliable results and to be able to compare them with other works, due to the big differences

in the detectability of the Sachs-Wolfe effect between different authors, as presented by

[3] and [10].

When comparing our results of dT/dxz with those of [4], we found that the range of

temperatures are slightly lower than [4], but the order of magnitude is similar. Conversely,

the Sachs-Wolfe maps are a factor of 102 times lower in temperature. This behavior can be

explained because the simulation box used in our work has only 400h−1Mpc in each axis,

and this defines our integration range, while the simulation box used by authors like [4]

is bigger compared with ours, being of 1h−1Gpc and it is periodically repeated in order

to create a mock catalogue of even more than 6h−1Gpc. Then, the accumulated values of

the integral from Equation 3.2 are 102 times greater than our results.

3.3.3 Numerical Convergence

A final test related to numerical convergence was made, in order to verify if the numeri-

cal methods were well implemented and determine whether the results are consistent and

converge to a well-behaved function. To test this hypothesis, we performed the numerical

integrations with the Simpson method with two differente integration steps: the first was

made with 1000 integration steps, while the second one was performed with 10000 steps.

Those different integration steps were implemented in the integration to obtain the tem-

perature perturbations along the z-axis, i.e., dT/dxz, and the whole integration to obtain
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the the temperature fluctuation respect to the mean temperature of the CMB, i.e., ∆T in

order to determine the Sachs-Wolfe maps shown in section 3.2.

First, we are going to analyze the behavior for the temperature perturbations along the

z-axis, for both, the values from the exact solution of Equation 3.2, and for those from the

linear approximation in Equation 3.3. In Figure 3.15, we can see the comparison between

the functions obtained with both integrations steps, for the exact solution values and for

linear approximation. The first plot at the top shown in Figure 3.15 is the same depicted

in Figure 3.14, and correspond to the comparison between the temperature perturbations

dT/dxz obtained with the exact values and those obtained in the linear approximation

with 10000 integration steps. The second plot, at the bottom, correspond to the same

comparison but made with 1000 integration steps. We do see a good behavior in both

plots, with a very similar shape and sharing the same order of magnitude, from which we

can conclude that the functions obtained from the interpolation, Φ̇interp(xz) and Φ̇i,l(xz)

are well-behaved and its integration converges to a well-behaved function.

The comparison between the results obtained with the two different integration steps is

depicted in Figure 3.16, separately for the exact solution values and for the linear regime.

The figure at the top correspond to the comparison of the temperature perturbations with

both integration steps for the exact solution, while the bottom picture correspond to the

comparison in the linear regime. Here we can see again that the overall structure of the

curves is maintained in both pictures.

Furthermore, Figure 3.17 and Figure 3.18 depict how even for the different grids, the

temperature perturbations maintain its structure and order of magnitude if the integration

is performed with 1000 or with 10000 integration steps, for the exact values or for the

linear regime, respectively. The plot at the top of Figure 3.17 shows the comparison of

the temperature fluctuation for the grids performed with 10000 integration steps with the

exact values, while the bottom plot is for the integration performed with 1000 integration

steps. It is analogous for the top and bottom figures of Figure 3.18, but in the linear

regime.

Finally, a comparison between the Sachs-Wolfe maps with the two different integra-

tion steps are shown in Figure 3.19 and Figure 3.20 for both regimes: the exact solution

and the linear regime, respectively. We continue seeing a good numerical convergence,

because in both regimes the overal structure of the Sachs-Wolfe maps looks to be the

same, and the differences between both integration steps are very slight.

From those results, it is possible to see that effectively, we have obtained a late ISW

contribution. It is remarkable to say that it is a late effect because our integration range
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comprehend only 400h−1Mpc, while in works as in [4], they have used an integration
range of 6h−1Gpc. Then, the range of redshifts used in this works is very near to z = 0.0,
while [4] has a wider range in redshift. Then, although it is possible to see in the plots
of dT/dxz (Figure 3.13) that the range of temperatures is very similar to the obtained in
[4], our late ISW maps have a range of temperatures a factor 102 times lower, due to the
small range of integration used by us. We can see that our results are consistent with the
work of [4], and it is due to the small range of integration that our results show a lower
temperature ranges. It is expected that, in the future step, when the mock catalogue will
be constructed, that our results show much more consistency with the works of the other
authors.
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Figure 3.11: Histogram of the time derivative of the gravitational potential Φ̇. The figure
shows four curves, tow for the snapshot with redshift z = 0.0 and two for the snapshot with
redshift z = 2.17. For each snapshot, one of the curves gives the values of Φ̇ > 0, while
the other curve gives the absolute value of the data when Φ̇ < 0. The data used in these
histograms are from the exact regime, given by Equation 3.2.
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Figure 3.12: Comparison of the interpolated functions Φ̇interp(xz) and Φ̇i,l(xz), obtained from
the values of the exact solution and the values from the linear regime, respectively. Both
interpolated functions were performed for the grid of Ng = 256. This figure shows the
comparison of both interpolated functions for the vectors with ID n = 0, 365, 500. We can
see that for each vector, both functions have a similar shape and the order of magnitude range
is almost the same, then having a similar behavior.
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Figure 3.13: Temperature perturbations dT/dxz (in units of hµ KMpc−1) along the z-axis.
This figure shows six different curves, four of each correspond to the temperature fluctuations
for the vectors with ID n256 = 0, 1, 256, 257 of the grid Ng = 256, while the aquamarine-
squared curve correspond to the temperature fluctuations for the vector n128 = 0 of the grid
Ng = 128 and the yellow-circled curve for the vector n64 = 0 of the grid Ng = 64. The
integration were performed with 10000 integration steps to find the temperature perturbation
for each cell. These curves show that both, the order of magnitude and the shape of the curves
do not depend on the resolution, and only underwent slightly fluctuations.
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Figure 3.14: Comparison of the temperature perturbations for the values from the exact solu-
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for the grid of Ng = 256. This figure shows the comparison of the temperature fluctuations
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having both regimes a similar behavior.
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Figure 3.15: Temperature perturbations along the integration axis, the z-axis, obtained with
the two integration steps used to test the numerical convergence. The first picture in the
top shows the temperature perturbations obtained with 10000 integration steps, and it is the
same figure depicted in Figure 3.14. The second picture in the bottom shows the temperature
perturbation for the 1000 integration steps. Both figures share a similar shape and order of
magnitude, meaning that our interpolated functions Φ̇interp(xz) and Φ̇i,l(xz) are well-behaved.
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Figure 3.16: Temperature perturbations along the integration axis, the z-axis, obtained with
the two integration steps used to test the numerical convergence. The first picture in the top
shows the comparison of the temperature perturbations obtained with the integration steps
used in the case of the exact solution. The second picture in the bottom shows the same
comparison but in the case of the linear regime values.
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Figure 3.17: Temperature perturbations along the integration axis, the z-axis, obtained with
the two integration steps used to test the numerical convergence. The first picture in the
top shows the comparison in the grids of the temperature perturbations obtained with 10000
integration steps used in the case of the exact solution. The second picture in the bottom shows
the same comparison but with 1000 integration steps. In both figures the order of magnitude
and the overall structure of the curves maintain, showing us a good numerical convergence.
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Figure 3.18: Temperature perturbations along the integration axis, the z-axis, obtained with
the two integration steps used to test the numerical convergence. The first picture in the top
shows the comparison in the grids of the temperature perturbations obtained with 10000 in-
tegration steps used in the linear regime. The second picture in the bottom shows the same
comparison but with 1000 integration steps. In both figures the order of magnitude and the
overall structure of the curves maintain, showing us a good numerical convergence and consis-
tent results when compared with the temperature fluctuations obtained with the exact solution
shown in Figure 3.17.
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Figure 3.19: Sachs-Wolfe anisotropy maps in the regime of the exact solution. The top figure
shows the map obtained with 10000 integration steps with the Simpson method, while the
bottom figure depicts the map obtained with 1000 integration steps. Both maps share the
same range of temperatures and the overal structure is very similar, allowing us to conclude
that our numerical methods were well implemented, in agreement with a good numerical
convergence. The map is in logarithmic scale, i.e., it is show log10(∆T ), with T in [µ K].
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Figure 3.20: Sachs-Wolfe anisotropy maps in the regime of the linear approximation. The top
figure shows the map obtained with 10000 integration steps with the Simpson method, while
the bottom figure depicts the map obtained with 1000 integration steps. Both maps share the
same range of temperatures and the overal structure is very similar, allowing us to conclude
that our numerical methods were well implemented, in agreement with a good numerical
convergence. Even when compared with the exact maps from Figure 3.19, the structure of
both regime maps is very similar, although the range of temperatures is slightly lower in the
linear case. The map is in logarithmic scale, i.e., it is show log10(∆T ), with T in [µ K].
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“The fact that the colors in the
flower evolved in order to attract in-
sects to pollinate it is interesting; it
means that insects can see the color.
It adds a question: does this aes-
thetic sense also exist in the lower
forms? [...] All kinds of inter-
esting questions which the science
knowledge only adds to the excite-
ment, the mystery and the awe of a
flower.”

Richard P. Feynman (about beauty)

CHAPTER

4
Conclusions

This chapter is dedicated to discuss and compile the results obtained throghout this

work. This final analysis is discussed in the order in which the results where obtained,

beginning with the maps of density fluctuations, gravitational potential and its time

derivative. Later, the Sachs-Wolfe maps will be discussed and finally the histograms of

the distribution of temperature fluctuations, density contrast and time derivative of the

gravitational potential.

4.1 Construction of Maps
As discussed in chapter 2, the maps of density contrast were obtained after an analysis of

the positions of the particles in a cosmological simulation through the Nearest Grid-Point

(NGP) scheme, in which a cubic grid with the same amount of cells per axis was used to

study the distribution of particles in a cubic box with 400h−1 Mpc of side in order to obtain

the density enclosed in each cell. From the three resolutions used (Ng = 64, 128, 256), the

highest resolution was used to compute all the other physical quantities. Once the density

of each cell was found, it is compared to the mean matter density of the simulation ρ in

order to obtain the density contrast ∆ and then, construct the corresponding maps of the

distribution of matter in the simulation. This last quantity allow us to find both, the grav-

itational potential Φ and its time derivative Φ̇. The gravitational potential is computed

through the Poisson’s equation (Equation 2.38) and with the help of a Fourier method
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this equation is transformed from the position-space to the Fourier space, giving the ex-

pression of Equation 2.39. Using the FFTW library to perform a Fast Fourier Transform

(FFT), this equation is solved numerically and transformed again to the position-space,

obtaining the corresponding values of the gravitational potential in the position-space.

The confirmation of the gravitational potential is not really necessary to know the value

of its time derivative Φ̇, but it has been calculated in this work in order to compare and

verify the behavior of Φ̇ respect to Φ. Finally, with the help of Equation 2.49, and being

careful with the sign convention used to perform the Fourier Transforms, it is possible to

obtain the numerical values of Φ̇ in the position-space and construct the corresponding

maps.

Figure 2.9 and Figure 2.10 shows a good correspondence between the structure of Φ

and Φ̇, and when comparing those results with Figure 2.8 the correspondence between

regions with high density and lowest values of gravitational potential or underdense

(and some void) regions with high values of the potential is more evident. Finally,

a linear approximation to the growth of structures was used in order to compute an

approximation to the time derivative of the potential well, namely, Φ̇l (Equation 2.56)

to compare the results obtained for Φ̇. When constructing the maps of Φ̇l (Figure 2.12),

the correspondence continues to look very well in the case of the analyzed snapshot with

redshift z = 0.0. Even, when comparing the distribution of the data of Φ̇ and Φ̇l in the

histogram of Figure 3.9, both distributions have a very similar shape and approximated

statistical moments. The comparison of Φ̇ and Φ̇l for redshift z = 0.0 gives good results

and allows to think in a good implementation of the methods used until this point.

A brief analysis about the behavior of the density contrast ∆(x), the gravitational po-

tential Φ(x) and the time derivative of the gravitational potential Φ̇(x) allowed to under-

stand the relations between those three physical quantities. From the maps of gravitational

potential it is easy to relate lower values of the potential with higher values of the density

contrast and vice versa. In the case of Φ̇(x), it is easy to see how for lower and negative

values of Φ(x), the time derivative Φ̇(x) takes higher and positive values, allowing us to

conclude that, based on the accelerated expansion of the Universe at lower redshifts, the

potential wells evolve quickly, passing from a deeper well to a less deeper well in the case

of the overdense regions, and passing from a “high mountain” to a less higher “mountain”

in the case of the underdense regions. This allows to relate the regions with high and

positive values of Φ̇(x) with the overdense regions, and the lowest and negative values or

Φ̇(x) with underdense regions.
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4.2 Estimation of the Late Integrated Sachs-Wolfe Effect
Once the time derivative of the gravitational potential was computed, an integration axis
was chosen (in particular, the z-axis) in order to perform an interpolation of the function
Φ̇(x) in terms of the comoving position xz along the z-axis, i.e., in order to obtain the
function Φ̇interp(xz). This interpolation was performed also in the linear regime, giving as
result the function Φ̇i,l(xz). Both interpolated functions were integrated with a Simpson
method, with the late Integrated Sachs-Wolfe maps as outcome in both regimes. It should
be mentioned that the Sachs-Wolfe maps were obtained for two different redshifts,
z = 0.0 and z = 2.17 in order to compare the evolution of the Sachs-Wolfe maps and
the distribution of the temperature fluctuations ∆T for the same system at two different
times. The Sachs-Wolfe maps and the histograms of the distribution of temperature
fluctuations can be seen in section 3.2.

From the analysis of the histograms of the temperature fluctuations ∆T is it possible
to prove how with the expansion of the Universe, which implies a faster evolution of the
gravitational potentials, the temperature’s range for the distribution at redshift z = 0.0 is
wider than the range of temperatures for the distribution at z = 2.17. It was also possible
to relate the asymmetries in the distribution of the values of the density contrast and the
time derivative of the gravitational potential with the asymmetries in the distribution of
the temperature fluctuations. In the case of the lowest redshift, z = 0.0, although the
distribution of Φ̇ showed an extended tail towards high and positive values (related with
overdense regions) and the negative values (related with underdense regions) have an
abrupt fall at an early value (in absolute value), the amount of underdense regions is higher
than the amount of overdense regions. For this reason, the integration over underdense
regions compensate the integration over the higher values of the overdense regions, and
even surpass them, giving as net effect a little great contribution of the underdense regions
over the overdense ones. This contribution of the underdense regions gives as result, an
asymmetry in the distribution of the temperature fluctuations towards the negative values
of ∆T , in other words, to the colder regions of the Sachs-Wolfe maps.

Conversely, in the case of the redshift z = 2.17, the distribution in the values of Φ̇

has an opposed behavior than for z = 0.0, i.e., although the distribution has an extended
tail towards the negative and lower values of Φ̇ (underdense regions), the amount of
overdense regions is large, and when the integration is performed, the net effect is a
little large contribution of those overdense regions over the underdense regions. This
contribution of the overdense regions, gives as result an asymmetry in the distribution of
∆T towards the positive values, which is related with the hotter regions in the maps of
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Sachs-Wolfe.

After the construction of the Sachs-Wolfe maps, some tests were performed in order to

conclude if the implemented methods go in a correct way. The first test was a comparison

of the exact values of Φ̇, given by Equation 2.49 and the values from the linear regime,

given by Equation 2.56. The comparison between the interpolated functions of Φ̇ in both

regimes showed a good convergence, maintaining a similar shape and order of magnitude.

A second test related with the temperature fluctuations along the integration axis (z-axis),

was performed, in which it was compared the temperature fluctuations dT/dxz in both

regimes. Again, the shape and order of magnitude in both regimes showed a good corre-

spondence, and even for different resolutions, the shape and order of magnitude showed

a good convergence. Although the temperature fluctuations were computed in order to

compare with the results of [4] and the order of magnitude is similar to that obtained by

them, we cannot see an damping in the behavior of dT/dxz, because the integration range

used by us is very small compared with the used by [4]. We expect that in a future, as will

be seen in section 4.3, with the construction of a mock catalogue we could obtain results

that we can compare more efficiently. Despite this, we have obtained the late ISW maps

for our simulation, which by the small integration range compared with the work of [4],

we have a small range in temperature fluctuations of the late ISW map, although they are

consistent results.

The final test was related with the numerical convergence of the integration method.

In this test, two different values for the number of integration steps were used: a

first integration was performed with 1000 integration steps, and the second one with

10000 integration steps. For both values of the integration steps, both the Sachs-Wolfe

maps and the temperature fluctuation along the z-axis (dT/dxz) showed a very good

numerical convergence, in which the shape, structure and order of magnitude of those

physical quantities was maintained in the two regimes we used. With those three test,

we can conclude that the numerical methods used in this work were well implemented

and showed coherent results, which are expected if we based our assumptions in the

described theoretical framework.

Finally, it is very worthy to stand out that the effect studied in this work it is not

really the Integrated Sachs-Wolfe, because as mentioned in the theoretical framework in

subsection 1.5.5, this Integrated Sachs-Wolfe effect is observed through the visual line

that joins the the surface of last scattering with the position of the observer in the Earth.

That means, the path that the photons travel is a very long way, much greater than the
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400h−1Mpc that compose our integration dominion. Despite this reason, this work gives
a very good preliminars in the study of the Sachs-Wolfe effect, which will be used to
compare the results from the integration through a mock catalogue constructed with the
boxes of the simulation used, and the values obtained when the same proccess is applied
to observational data.

4.3 Outlook
Along the work it was mentioned that it has been studied a late Integrated Sachs-Wolfe
effect, due to the long time and lack of computational resourses to make the study more
extensive and detailed. The outlook is to make use of the methods shown here in order to
calculate a complete Integrated Sachs-Wolfe effect through a mock catalogue constructed
with the simulation boxes at different redshifts one after another. After those results
with the mock catalogue, the aim is to perform the same processing to a real catalogue of
galaxies taken from one of the data releases of the Sloan Digital Sky Survey and determine
the detectability of the Integrated Sachs-Wolfe effect with real data and determine if this
can be used as evidence of the dark energy which is the cause of the accelerated rate of
expansion of the Universe.
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